Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Geographical and temporal variations in metal speciation were calculated and water-type specific sensitivities were derived for a range of aquatic species, using surveillance water chemistry data that cover almost all surface water types in The Netherlands. Biotic ligand models for Cu, Zn, and Ni were used to normalize chronic no-effect concentrations (NOEC) determined in test media toward site-specific NOEC for 372 sites sampled repeatedly over 2007-2010. Site-specific species sensitivity distributions were constructed accounting for chemical speciation. Sensitivity of species as well as predicted risks shifted among species over space and time, due to changes in metal concentrations, speciation, and biotic ligand binding. Sensitivity of individual species (NOEC) and of the ecosystem (HC5) for Cu, Ni, and Zn showed a spatial variation up to 2 orders of magnitude. Seasonality of risks was shown, with an average ratio between lowest and highest risk of 1.3, 2.0, and 3.6 for Cu, Ni, and Zn, respectively. Maximum risks of Cu, Ni, and Zn to ecosystems were predicted in February and minimum risks in September. A risk assessment using space-time specific HC5 of Cu and Zn resulted in a reduction of sites at risk, whereas for Ni the number of sites at risks increased.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es2007963 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!