Tunneling spectroscopy of organic monolayers and single molecules.

Top Curr Chem

Department of Chemistry and Materials Science, Washington State University, Pullman,WA, USA.

Published: March 2012

Basic concepts in tunneling spectroscopy applied to molecular systems are presented. Junctions of the form M-A-M, M-I-A-M, and M-I-A-I'-M, where A is an active molecular layer, are considered. Inelastic electron tunneling spectroscopy (IETS) is found to be readily applied to all the above device types. It can provide both vibrational and electron spectroscopic data about the molecules comprising the A layer. In IETS there are no strong selection rules (although there are preferences) so that transitions that are normally IR, Raman, or even photon-forbidden can be observed. In the electronic transition domain, spin and Laporte forbidden transitions may be observed. Both vibrational and electronic IETS can be acquired from single molecules. The negative aspect of this seemingly ideal spectroscopic method is the thermal line width of about 5 k(B)T. This limits the useful measurement of vibrational IETS to temperatures below about 10 K. In the case of most electronic transitions where the intrinsic linewidth is much broader, useful experiments above 100 K are possible. One further limitation of electronic IETS is that it is generally limited to transitions with energy less than about 20,000 cm(-1). IETS can be identified by peaks in d(2) I/dV (2) vs bias voltage plots that occur at the same position (but not necessarily same intensity) in either bias polarity.Elastic tunneling spectroscopy is discussed in the context of processes involving molecular ionization and electron affinity states, a technique we call orbital mediated tunneling spectroscopy, or OMTS. OMTS can be applied readily to M-I-A-M and M-I-A-I'-M systems, but application to M-A-M junctions is problematic. Spectra can be obtained from single molecules. Ionization state results correlate well with UPS spectra obtained from the same systems in the same environment. Both ionization and affinity levels measured by OMTS can usually be correlated with one electron oxidation and reduction potentials for the molecular species in solution. OMTS can be identified by peaks in dI/dV vs bias voltage plots that do not occur at the same position in either bias polarity. Because of the intrinsic width of the ionization and affinity transitions, OMTS can be applied at temperatures above 500 K.This is not a comprehensive review of more than 20 years of research and there are many excellent papers that are not cited here. An absence of a citation is not a reflection on the quality of the work.

Download full-text PDF

Source
http://dx.doi.org/10.1007/128_2011_175DOI Listing

Publication Analysis

Top Keywords

tunneling spectroscopy
20
single molecules
12
m-i-a-m m-i-a-i'-m
8
electronic iets
8
identified peaks
8
bias voltage
8
voltage plots
8
plots occur
8
occur position
8
omts applied
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!