Real-time detection of changes in the electrophoretic mobility of a single cell induced by hyperosmotic stress.

Eur Biophys J

ICFO-The Institute of Photonic Sciences, Av. Carl Friedrich Gauss, num. 3, 08860 Barcelona, Castelldefels, Spain.

Published: September 2011

Living cells survive environmentally stressful conditions by initiating a stress response. We monitored changes in the electrophoretic mobility (EPM) of single, optically trapped yeast cells under hyperosmotic stress conditions using optical tweezers combined with a position detector. We studied the dynamics of the EPM stress response for cells at different phases of the cell cycle.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00249-011-0725-0DOI Listing

Publication Analysis

Top Keywords

changes electrophoretic
8
electrophoretic mobility
8
hyperosmotic stress
8
stress response
8
real-time detection
4
detection changes
4
mobility single
4
single cell
4
cell induced
4
induced hyperosmotic
4

Similar Publications

For the first time asymmetric and symmetric carboxytriazoleimidazolium derivatives with different structures were synthesized. The critical micellization concentration (CMC) value was estimated using a pyrene fluorescent probe and the solubility of Orange OT. The complexation ability of carboxytriazoleimidazolium derivatives toward bovine serum albumin (BSA) has been investigated by various physico-chemical methods: fluorescence spectroscopy, electrophoretic light scattering and circular dichroism.

View Article and Find Full Text PDF

Effect of the operational parameters on the electromigration of proteins in sodium dodecyl sulfate capillary gel electrophoresis in the presence of propidium iodide fluorescent dye.

Talanta

January 2025

Translational Glycomics Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Hungary; Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Hungary. Electronic address:

Sodium dodecyl sulfate capillary gel electrophoresis (SDS-CGE) is a frequently used analytical technique in size-based separation of proteins, playing a vital role in the biopharmaceutical industry for the analysis and characterization of therapeutic proteins, employing both UV and fluorescent detection. Understanding the effect of the operational parameters using easily applicable in migratio fluorescent labeling is increasingly critical, especially because multicapillary electrophoresis systems with fluorescent detection have recently gained prominence in high-throughput biopolymer analysis. In this study, the effects of the three most important user-adjustable operational parameters (temperature, gel concentration, and electric field strength) were investigated on the electrophoretic mobility and resolution of SDS-protein complexes in the presence of propidium iodide in the gel-buffer system.

View Article and Find Full Text PDF

AGEing of collagen: The effects of glycation on collagen's stability, mechanics and assembly.

Matrix Biol

February 2025

Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:

Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

Upconverting/magnetic Janus-like nanoparticles integrated into spiropyran micelle-like nanocarriers for NIR light- and pH- responsive drug delivery, photothermal therapy and biomedical imaging.

Colloids Surf B Biointerfaces

January 2025

Biofunctional Nanomaterials Laboratory, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro 76230, Mexico. Electronic address:

The integration of multiple functionalities into single theranostic platforms offers new opportunities for personalized and minimally invasive clinical interventions, positioning these materials as highly promising tools in modern medicine. Thereby, magneto-luminescent Janus-like nanoparticles (JNPs) were developed herein, and encapsulated into near-infrared (NIR) light- and pH- responsive micelle-like aggregates (Mic) for simultaneous magnetic targeting, biomedical imaging, photothermal therapy, and pH- NIR-light activated drug delivery. The JNPs consisted of NaYF:Yb,Tm upconverting nanoparticles (UCNPs) on which a well-differentiated magnetite structure (MNPs) grew epitaxially.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!