Morphology and rheology of an immiscible polymer blend subjected to a step electric field under shear flow.

J Phys Condens Matter

Division of Applied Physics, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.

Published: July 2011

We have investigated the structural change of an immiscible polymer blend in shear flow when subjected to a step electric field. During the process three-dimensional images were successfully constructed with a confocal scanning laser microscope and at the same time the transient shear stress was also measured. The interface tensor was calculated from the images. Several factors are incorporated into the shear stress, such as the bulk viscosity, the interfacial tension and the Maxwell stress. We performed an experiment to separate the Maxwell stress from the total shear stress. The results are discussed in terms of the interface tensor.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/23/28/284106DOI Listing

Publication Analysis

Top Keywords

shear stress
12
immiscible polymer
8
polymer blend
8
subjected step
8
step electric
8
electric field
8
shear flow
8
interface tensor
8
maxwell stress
8
shear
5

Similar Publications

Local hemodynamics play an essential role in the initiation and progression of coronary artery disease. While vascular geometry alters local hemodynamics, the relationship between vascular structure and hemodynamics is poorly understood. Previous computational fluid dynamics (CFD) studies have explored how anatomy influences plaque-promoting hemodynamics.

View Article and Find Full Text PDF

Aim: Branch atheromatous disease (BAD), characterized by the occlusion of perforating branches near the orifice of a parent artery, often develops early neurological deterioration because the mechanisms underlying BAD remain unclear. Abnormal wall shear stress (WSS) is strongly associated with endothelial dysfunction and plaque growth or rupture. Therefore, we hypothesized that computational fluid dynamics (CFD) modeling could detect differences in WSS between BAD and small-vessel occlusion (SVO), both of which result from perforating artery occlusion/stenosis.

View Article and Find Full Text PDF

The stability of kinetic-level convection cells (wherein the magnitude of macroscopic and microscopic velocities are of same order) is studied in a two-dimensional Yukawa liquid under the effect of microscopic velocity perturbations. Our numerical experiments demonstrate that for a given system aspect ratio β viz., the ratio of system length [Formula: see text] to its height [Formula: see text] and number of convective rolls initiated [Formula: see text], the fate of the convective cells is decided by [Formula: see text].

View Article and Find Full Text PDF

Loess is extensively developed on both sides of the Longwu River, a tributary of the Yellow River, Tongren County, Qinghai Province. The engineering geological characteristics are complex, and landslide disasters are highly developed. Based on field geological surveys and physical property analysis of the loess in this area, this study analyzes the influence of water content, consolidation pressure, and soil disturbance on the dynamic characteristics of loess using GDS dynamic triaxial tests.

View Article and Find Full Text PDF

Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!