In our companion paper, the physiological functions of pancreatic β cells were analyzed with a new β-cell model by time-based integration of a set of differential equations that describe individual reaction steps or functional components based on experimental studies. In this study, we calculate steady-state solutions of these differential equations to obtain the limit cycles (LCs) as well as the equilibrium points (EPs) to make all of the time derivatives equal to zero. The sequential transitions from quiescence to burst-interburst oscillations and then to continuous firing with an increasing glucose concentration were defined objectively by the EPs or LCs for the whole set of equations. We also demonstrated that membrane excitability changed between the extremes of a single action potential mode and a stable firing mode during one cycle of bursting rhythm. Membrane excitability was determined by the EPs or LCs of the membrane subsystem, with the slow variables fixed at each time point. Details of the mode changes were expressed as functions of slowly changing variables, such as intracellular [ATP], [Ca(2+)], and [Na(+)]. In conclusion, using our model, we could suggest quantitatively the mutual interactions among multiple membrane and cytosolic factors occurring in pancreatic β cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137027 | PMC |
http://dx.doi.org/10.1085/jgp.201110612 | DOI Listing |
Int J Mol Sci
January 2025
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.
Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA.
The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.
Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
We design and construct an ultrafast optical spectroscopy instrument that integrates both on-site in situ high-pressure technique and low-temperature tuning capability. Conventional related instruments rely on off-site tuning and calibration of the high pressure. Recently, we have developed an on-site in situ technique, which has the advantage of removing repositioning fluctuation.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Chemistry, Faculty of Science, Marmara University, 34722 Istanbul, Turkey.
Within the scope of this study, a polymer-based optical sensor that can polymerize under UV radiation and produce fluorescence when suitable functional monomers and crosslinkers were prepared for aluminum determination in yogurt, soybean flour, and meat samples. Parameters such as operating range, pH, sensitivity, selectivity, determination limit, and foreign ion effect were thoroughly investigated to validate the developed method and characterize this polymer-based membrane. The designed sensor has wavelengths of 322 nm for fluorescence excitation and 356 nm for emission, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!