In our companion paper, the physiological functions of pancreatic β cells were analyzed with a new β-cell model by time-based integration of a set of differential equations that describe individual reaction steps or functional components based on experimental studies. In this study, we calculate steady-state solutions of these differential equations to obtain the limit cycles (LCs) as well as the equilibrium points (EPs) to make all of the time derivatives equal to zero. The sequential transitions from quiescence to burst-interburst oscillations and then to continuous firing with an increasing glucose concentration were defined objectively by the EPs or LCs for the whole set of equations. We also demonstrated that membrane excitability changed between the extremes of a single action potential mode and a stable firing mode during one cycle of bursting rhythm. Membrane excitability was determined by the EPs or LCs of the membrane subsystem, with the slow variables fixed at each time point. Details of the mode changes were expressed as functions of slowly changing variables, such as intracellular [ATP], [Ca(2+)], and [Na(+)]. In conclusion, using our model, we could suggest quantitatively the mutual interactions among multiple membrane and cytosolic factors occurring in pancreatic β cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137027PMC
http://dx.doi.org/10.1085/jgp.201110612DOI Listing

Publication Analysis

Top Keywords

membrane excitability
12
pancreatic cells
12
differential equations
8
eps lcs
8
membrane
5
time-dependent changes
4
changes membrane
4
excitability glucose-induced
4
glucose-induced bursting
4
bursting activity
4

Similar Publications

Fucosidosis: A Review of a Rare Disease.

Int J Mol Sci

January 2025

Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Turkey.

Fucosidosis is a rare lysosomal storage disease caused by α-L-fucosidase deficiency following a mutation in the gene. This enzyme is responsible for breaking down fucose-containing glycoproteins, glycolipids, and oligosaccharides within the lysosome. Mutations in result in either reduced enzyme activity or complete loss of function, leading to the accumulation of fucose-rich substrates in lysosomes.

View Article and Find Full Text PDF

The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.

View Article and Find Full Text PDF

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

Low-temperature on-site in situ high-pressure ultrafast pump-probe spectroscopy instrument.

Rev Sci Instrum

January 2025

Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

We design and construct an ultrafast optical spectroscopy instrument that integrates both on-site in situ high-pressure technique and low-temperature tuning capability. Conventional related instruments rely on off-site tuning and calibration of the high pressure. Recently, we have developed an on-site in situ technique, which has the advantage of removing repositioning fluctuation.

View Article and Find Full Text PDF

Within the scope of this study, a polymer-based optical sensor that can polymerize under UV radiation and produce fluorescence when suitable functional monomers and crosslinkers were prepared for aluminum determination in yogurt, soybean flour, and meat samples. Parameters such as operating range, pH, sensitivity, selectivity, determination limit, and foreign ion effect were thoroughly investigated to validate the developed method and characterize this polymer-based membrane. The designed sensor has wavelengths of 322 nm for fluorescence excitation and 356 nm for emission, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!