Generation of patient-specific induced pluripotent cells (iPSCs) holds great promise for regenerative medicine. Epstein-Barr virus immortalized lymphoblastoid B-cell lines (LCLs) can be generated from a minimal amount of blood and are banked worldwide as cellular reference material for immunologic or genetic analysis of pedigreed study populations. We report the generation of iPSCs from 2 LCLs (LCL-iPSCs) via a feeder-free episomal method using a cocktail of transcription factors and small molecules. LCL-derived iPSCs exhibited normal karyotype, expressed pluripotency markers, lost oriP/EBNA-1 episomal vectors, generated teratomas, retained donor identity, and differentiated in vitro into hematopoietic, cardiac, neural, and hepatocyte-like lineages. Significantly, although the parental LCLs express viral EBNA-1 and other Epstein-Barr virus latency-related elements for their survival, their presence was not detectable in LCL-iPSCs. Thus, reprogramming LCLs could offer an unlimited source for patient-specific iPSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4081297PMC
http://dx.doi.org/10.1182/blood-2011-01-332064DOI Listing

Publication Analysis

Top Keywords

lymphoblastoid b-cell
8
b-cell lines
8
induced pluripotent
8
epstein-barr virus
8
human lymphoblastoid
4
lines reprogrammed
4
reprogrammed ebv-free
4
ebv-free induced
4
pluripotent stem
4
stem cells
4

Similar Publications

Epstein-Barr virus hijacks B cell metabolism to establish persistent infection and drive pathogenesis.

Trends Immunol

December 2024

Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.

When B cells engage in an immune response, metabolic reprogramming is key to meeting cellular energetic and biosynthetic demands. Epstein-Barr virus (EBV) is a highly prevalent gamma-herpesvirus, latently infecting B cells for the human host's lifetime. By hijacking signaling pathways of T cell-dependent humoral immunity, EBV activates B cells in a T cell-independent manner, forcing lymphoblastoid transformation.

View Article and Find Full Text PDF

Human genetic variation reveals FCRL3 is a lymphocyte receptor for .

bioRxiv

December 2024

Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA.

is the gram-negative bacterium responsible for plague, one of the deadliest and most feared diseases in human history. This bacterium is known to infect phagocytic cells, such as dendritic cells and macrophages, but interactions with non-phagocytic cells of the adaptive immune system are frequently overlooked despite the importance they likely hold for human infection. To discover human genetic determinants of infection, we utilized nearly a thousand genetically diverse lymphoblastoid cell lines in a cellular genome-wide association study method called Hi-HOST (High-throughput Human in-vitrO Susceptibility Testing).

View Article and Find Full Text PDF

Unlabelled: Epstein-Barr virus (EBV) is associated with multiple types of cancers, many of which express the key viral oncoprotein Latent Membrane Protein 1 (LMP1). LMP1 is the only EBV-encoded protein whose expression is sufficient to transform both epithelial and B-cells. Although metabolism reprogramming is a cancer hallmark, much remains to be learned about how LMP1 alters lymphocyte oncometabolism.

View Article and Find Full Text PDF

Immunocompromised individuals are at risk for developing lymphocryptovirus-associated lymphoproliferative diseases, such as Epstein Barr virus (EBV)-associated B cell lymphomas and post-transplant lymphoproliferative disorder (PTLD). We previously reported development of cynomolgus lymphocryptovirus (CyLCV)-associated PTLD in Mauritian cynomolgus macaques (MCMs) undergoing hematopoietic stem cell transplantation (HSCT), which mirrored EBV-PTLD in transplant patients. Here, we sought to develop a MCM model of lymphocryptovirus-associated lymphoproliferative disease in immunosuppressed MCMs without HSCT.

View Article and Find Full Text PDF
Article Synopsis
  • * A meta-analysis of Ago-CLIP datasets from various B cell lymphomas revealed functional interactions between BART miRNAs and over 50 protein-coding transcripts, affecting processes like B cell differentiation, cell cycle regulation, and tumor suppression.
  • * Ectopic expression of BART miRNAs in EBV-negative Burkitt lymphomas caused significant transcriptional changes, suggesting their critical role in influencing molecular characteristics of EBV-associated lymphomas.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!