Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry.

Biochim Biophys Acta

Department of Chemistry, Vanderbilt University, Nashville, TN, USA.

Published: November 2011

Recent advances in mass spectrometry approaches to the analysis of lipids include the ability to incorporate both lipid class identification with lipid structural information for increased characterization capabilities. The detailed examination of lipids and their biosynthetic and biochemical pathways made possible by novel instrumental and bioinformatics approaches is advancing research in fundamental cellular and medical studies. Recently, high-throughput structural analysis has been demonstrated through the use of rapid gas-phase separation on the basis of the ion mobility (IM) analytical technique combined with mass spectrometry (IM-MS). While IM-MS has been extensively utilized in biochemical research for peptide, protein and small molecule analysis, the role of IM-MS in lipid research is still an active area of development. In this review of lipid-based IM-MS research, we begin with an overview of three contemporary IM techniques which show great promise in being applied towards the analysis of lipids. Fundamental concepts regarding the integration of IM-MS are reviewed with emphasis on the applications of IM-MS towards simplifying and enhancing complex biological sample analysis. Finally, several recent IM-MS lipid studies are highlighted and the future prospects of IM-MS for integrated omics studies and enhanced spatial profiling through imaging IM-MS are briefly described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3326421PMC
http://dx.doi.org/10.1016/j.bbalip.2011.05.016DOI Listing

Publication Analysis

Top Keywords

im-ms
9
mass spectrometry
8
analysis lipids
8
im-ms lipid
8
lipid
5
analysis
5
lipid analysis
4
analysis lipidomics
4
lipidomics structurally
4
structurally selective
4

Similar Publications

Leaves of tomato plants contain various glandular trichomes that produce a wide range of metabolic products including acylsugars, which may serve as a defense mechanism against various insect pests. Acylsugars exhibit significant structural diversity, differing in their sugar cores, acylated positions, and type of acyl chains. This work demonstrated a comprehensive approach using multidimensional separation techniques, specifically liquid chromatography-ion mobility-tandem mass spectrometry (LC-IM-MS/MS), for structural characterization, and the discrimination of different tomato plants (one cultivar and five accessions) was demonstrated using tomato leaf extracts; six genotypes from five species of were represented.

View Article and Find Full Text PDF

Electrophoresis-Correlative Ion Mobility Deepens Single-cell Proteomics in Capillary Electrophoresis Mass Spectrometry.

Mol Cell Proteomics

December 2024

Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742. Electronic address:

Detection of trace-sensitive signals is a current challenge in single-cell mass spectrometry (MS) proteomics. Separation prior to detection improves the fidelity and depth of proteome identification and quantification. We recently recognized capillary electrophoresis (CE) electrospray ionization (ESI) for ordering peptides into mass-to-charge (m/z)-dependent series, introducing electrophoresis-correlative (Eco) data-independent acquisition.

View Article and Find Full Text PDF

Intrinsically disordered proteins (IDPs) are important drug targets as they are key actors within cell signaling networks. However, the conformational plasticity of IDPs renders them challenging to characterize, which is a bottleneck in developing small molecule drugs that bind to IDPs and modulate their behavior. In relation to this, ion mobility mass spectrometry (IM-MS) is a useful tool to investigate IDPs, as it can reveal their conformational preferences.

View Article and Find Full Text PDF

Rounded Turn SLIM Design for High-Resolution Ion Mobility Mass Spectrometry Analysis of Small Molecules.

Anal Chem

December 2024

MOBILion Systems, Inc., 4 Hillman Drive, Suite 130, Chadds Ford, Pennsylvania 19317, United States.

Various rounded turn designs in Structures for Lossless Ion Manipulation (SLIM) were explored via ion trajectory simulations. The optimized design was integrated into a SLIM ion mobility (IM) system coupled with a time-of-flight (TOF) mass spectrometer (MS) for further experimental investigation. The SLIM-TOF IM-MS system was assessed for IM resolution and ion transmission efficiency across a wide / range using various RF frequencies and buffer gas combinations.

View Article and Find Full Text PDF
Article Synopsis
  • * Accurate measurement of these APLs, particularly their specific fatty acid connections, remains difficult with existing methods.
  • * The study introduces a new approach using isotopic labeling and high-resolution ion mobility MS to effectively quantify APL -isomers, revealing their changes in Alzheimer’s disease models, thus paving the way for better understanding of their role in health and disease.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!