Protein kinase C mediates peroxynitrite toxicity to oligodendrocytes.

Mol Cell Neurosci

Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA

Published: September 2011

Peroxynitrite has been suggested to be the potent oxidant causing toxicity to neurons and oligodendrocytes (OLs). Our previous studies have illustrated that intracellular zinc liberation contributes to peroxynitrite toxicity to mature OLs. In this study, we further investigated the signaling pathways involved in this event and identified protein kinase C (PKC) as an important early signaling molecule. We found that a non-selective PKC inhibitor bisindolylmaleimide-1 blocked OL toxicity induced by a peroxynitrite generator SIN-1 and exogenous zinc. The protective effects were due to its inhibition on ERK1/2 phosphorylation and ROS generation. The same phenomenon was also observed in OLs following prolonged treatment with phorbol 12 myristate 13 acetate (PMA), which downregulates the conventional and the novel PKC isoforms (cPKCs and nPKCs). To determine the role of specific PKC isoforms, we found that a specific nPKC inhibitor rottlerin significantly reduced SIN-1- or zinc-induced toxicity, whereas Go6976, a cPKC inhibitor, reduced OL toxicity triggered by zinc, but not by SIN-1 at high concentrations. Rottlerin was more potent than Go6976 to attenuate ERK1/2 phosphorylation and ROS generation induced by SIN-1 or zinc. Surprisingly, zinc only induced phosphorylation of PKCθ, but not PKCδ. Knockdown of PKCθ using lentiviral shRNA attenuated SIN-1- or zinc-induced toxicity. These results suggest that PKCθ might be the major PKC isoform involved in peroxynitrite and zinc toxicity to mature OLs, and provide a rationale for development of specific inhibitors of PKCθ in the treatment of multiple sclerosis and other neurodegenerative diseases, in which peroxynitrite formation plays a pathogenic role.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mcn.2011.06.006DOI Listing

Publication Analysis

Top Keywords

protein kinase
8
toxicity
8
peroxynitrite toxicity
8
toxicity mature
8
mature ols
8
erk1/2 phosphorylation
8
phosphorylation ros
8
ros generation
8
pkc isoforms
8
sin-1- zinc-induced
8

Similar Publications

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

PLK1 overexpression suppresses homologous recombination and confers cellular sensitivity to PARP inhibition.

Sci Rep

December 2024

Department of Frontier Medicine, Institute of Medical Science, Graduate School of Medicine, St. Marianna University, Kawasaki, 2168511, Japan.

The overexpression of Polo-like kinase 1 (PLK1) is associated with poor clinical outcomes in various malignancies, making it an attractive target for anticancer therapies. Although recent studies suggest PLK1's involvement in homologous recombination (HR), the impact of its overexpression on HR remains unclear. In this study, we investigated the effect of PLK1 overexpression on HR using bioinformatics and experimental approaches.

View Article and Find Full Text PDF

To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!