Hydrogen peroxide modulates the dynamic microtubule cytoskeleton during the defence responses to Verticillium dahliae toxins in Arabidopsis.

Plant Cell Environ

State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.

Published: September 2011

The molecular mechanisms of signal transduction of plants in response to infection by Verticillium dahliae (VD) are not well understood. We previously showed that NO may act as an upstream signalling molecule to trigger the depolymerization of cortical microtubules in Arabidopsis. In the present study, we used the wild-type, and atrbohD and atrbohF mutants of Arabidopsis to explore the mechanisms of action of H(2)O(2) signals and the dynamic microtubule cytoskeleton in defence responses. We demonstrated that H(2)O(2) may also act as an upstream signalling molecule to regulate cortical microtubule depolymerization. The depolymerization of the cortical microtubules played a functional role in the signalling pathway to mediate the expression of defence genes. The results indicate that H(2)O(2) modulates the dynamic microtubule cytoskeleton to trigger the expression of defence genes against V. dahliae toxins (VD-toxins) in Arabidopsis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-3040.2011.02356.xDOI Listing

Publication Analysis

Top Keywords

dynamic microtubule
12
microtubule cytoskeleton
12
modulates dynamic
8
cytoskeleton defence
8
defence responses
8
verticillium dahliae
8
dahliae toxins
8
upstream signalling
8
signalling molecule
8
depolymerization cortical
8

Similar Publications

Unlabelled: Melanin pigments block genotoxic agents by positioning on the sun-exposed side of human skin keratinocytes' nucleus. How this position is regulated and its role in genome photoprotection remains unknown. By developing a model of human keratinocytes internalizing extracellular melanin into pigment organelles, we show that keratin 5/14 intermediate filaments mechanically control the 3D perinuclear position of pigments, shielding DNA from photodamage.

View Article and Find Full Text PDF

In developing tissues, the number, position, and differentiation of cells must be coordinately controlled to ensure the emergence of physiological function. The epidermis of the Xenopus embryo contains thousands of uniformly distributed multiciliated cells (MCCs), which grow hundreds of coordinately polarized cilia that beat vigorously to generate superficial water flow. Using this model, we uncovered a dual role for the conserved centriolar component Odf2, in MCC apical organization at the cell level, and in MCC spatial distribution at the tissue level.

View Article and Find Full Text PDF

Emerging roles for tubulin PTMs in neuronal function and neurodegenerative disease.

Curr Opin Neurobiol

January 2025

Department of Pathology & Cell Biology, Columbia University Irving Medical Center, 10032, New York, NY, USA. Electronic address:

Neurons are equipped with microtubules of different stability with stable and dynamic domains often coexisting on the same microtubule. While dynamic microtubules undergo random transitions between disassembly and assembly, stable ones persist long enough to serve as platforms for tubulin-modifying enzymes (known as writers) that attach molecular components to the α- or β-tubulin subunits. The combination of these posttranslational modifications (PTMs) results in a "tubulin code," dictating the behavior of selected proteins (known as readers), some of which were shown to be crucial for neuronal function.

View Article and Find Full Text PDF

Cell immortalization corresponds to a biologically relevant clinical feature that allows cells to acquire a high proliferative potential during carcinogenesis. In multiple cancer types, Protein Kinase D3 (PKD3) has often been reported as a dysregulated oncogenic kinase that promotes cell proliferation. Using mouse embryonic fibroblasts (MEFs), in a spontaneous immortalization model, PKD3 has been demonstrated as a critical regulator of cell proliferation after immortalization.

View Article and Find Full Text PDF

A network of interacting ciliary tip proteins with opposing activities imparts slow and processive microtubule growth.

Nat Struct Mol Biol

January 2025

Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Cilia are motile or sensory organelles present on many eukaryotic cells. Their formation and function rely on axonemal microtubules, which exhibit very slow dynamics, but the underlying mechanisms are largely unexplored. Here we reconstituted in vitro the individual and collective activities of the ciliary tip module proteins CEP104, CSPP1, TOGARAM1, ARMC9 and CCDC66, which interact with each other and with microtubules and, when mutated in humans, cause ciliopathies such as Joubert syndrome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!