A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin. | LitMetric

Niosomes as a potential drug delivery system for increasing the efficacy and safety of nystatin.

Drug Dev Ind Pharm

Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Center-NRC, Dokki, Cairo 12311, Egypt.

Published: December 2011

Nonionic surfactant (NIS) vesicles (niosomes) formed from self-assembly of hydrated synthetic NIS monomers are capable of entrapping a variety of drugs and have been evaluated as an alternative to liposomes. Nystatin (NYS) is a polyene antifungal drug that has been used in the treatment of cutaneous, vaginal and oral fungal infections since the 1950s. The aim of this work is to encapsulate NYS in niosomes to obtain a safe and effective formula administered parenterally for neutropenic patients. NYS niosomes were prepared by the thin-film hydration method using Span 60 or Span 40 and cholesterol (CHOL). Stearylamine and dicetyl phosphate were added as the positive and negative charge-inducing agents (CIA), respectively. Two molar ratios were used, namely NIS/CHOL/CIA (1:1:0.1 and 2:1:0.25). Neutral and positively charged niosomes gave the highest encapsulation efficiencies. NYS niosomes were characterized using transmission electron microscopy, differential scanning calorimetry and dynamic light scattering. The release of neutral and negatively charged NYS niosomes was estimated, and it showed a slow sustained release profile. A 25-kGy γ-irradiation dose was sufficient to sterilize the investigated vesicles. NYS niosomes exerted less nephrotoxicity and hepatotoxicity in vivo, showed higher level of drug in vital organs and revealed pronounced efficacy in elimination of the fungal burden in experimental animals infected with Candida albicans compared with those treated with free NYS. Niosomal encapsulation thus provided means for parenteral administration of NYS, reducing its toxicity and making it a more active antifungal agent.

Download full-text PDF

Source
http://dx.doi.org/10.3109/03639045.2011.587431DOI Listing

Publication Analysis

Top Keywords

nys niosomes
20
niosomes
8
nys
8
niosomes potential
4
potential drug
4
drug delivery
4
delivery system
4
system increasing
4
increasing efficacy
4
efficacy safety
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!