We report direct observation of an unexpected anisotropic swelling of Si nanowires during lithiation against either a solid electrolyte with a lithium counter-electrode or a liquid electrolyte with a LiCoO(2) counter-electrode. Such anisotropic expansion is attributed to the interfacial processes of accommodating large volumetric strains at the lithiation reaction front that depend sensitively on the crystallographic orientation. This anisotropic swelling results in lithiated Si nanowires with a remarkable dumbbell-shaped cross section, which develops due to plastic flow and an ensuing necking instability that is induced by the tensile hoop stress buildup in the lithiated shell. The plasticity-driven morphological instabilities often lead to fracture in lithiated nanowires, now captured in video. These results provide important insight into the battery degradation mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl201684d | DOI Listing |
Int J Biol Macromol
January 2025
Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China. Electronic address:
Since cartilage injury is often accompanied by subchondral bone damage, conventional single-phase materials cannot accurately simulate the osteochondral structure or repair osteochondral injury. In this work, a gradient gelatin-methacryloyl (GelMA) hydrogel scaffold was constructed by a layer-by-layer stacking method to realize full-thickness regeneration of cartilage, calcified cartilage and subchondral bone. Of note, to surmount the inadequate mechanical property of GelMA hydrogel, nanohydroxyapatite (nHA) was incorporated and further functionalized with hydroxyethyl methacrylate (nHA-hydroxyethyl methacrylate, nHAMA) to enhance the interfacial adhesion with the hydrogel, resulting in better mechanical strength akin to human bone.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
This study investigates lignin's influence on the hygroscopic behavior of poplar wood. Delignification was achieved using an acidic NaClO solution, and digital image correlation (DIC) was employed to measure strain distribution during shrinking and swelling across relative humidity (RH) ranging of 0 % to 97 %. Results showed that lignin removal increased equilibrium moisture content (EMC) by up to 3.
View Article and Find Full Text PDFMater Today Bio
December 2024
Department of Microbiology, Tokyo Dental College, Tokyo, 101-0061, Japan.
Anti-microbial nanopatterns have attracted considerable attention; however, its principle is not yet fully understood, particularly for inorganic nanopatterns. Titanium nanosurfaces with dense and anisotropically patterned nanospikes regulate biological functions with multiple physical stimulations, which may be because of the nanopattern-induced alternation of surface physical properties. This study aimed to determine the antimicrobial capability of titanium nanosurfaces and their mechanisms.
View Article and Find Full Text PDFBiofabrication
December 2024
Technical University of Darmstadt, Institute for BioMedical Printing Technology, Magdalenenstr. 2, 64289 Darmstadt, Germany.
3D-bioprinting is a promising technique to mimic the complex anatomy of natural tissues, as it comprises a precise and gentle way of placing bioinks containing cells and hydrogel. Although hydrogels expose an ideal growth environment due to their extracellular matrix (ECM)-like properties, high water amount and tissue like microstructure, they lack mechanical strength and possess a diffusion limit of a couple of hundred micrometers. Integration of electrospun fibers could hereby benefit in multiple ways, for instance by controlling mechanical characteristics, cell orientation, direction of diffusion and anisotropic swelling behavior.
View Article and Find Full Text PDFPLoS One
December 2024
College of Petrochemical Engineering, Zhangzhou Institute of Technology, Zhangzhou, China.
To expand the potential applications of raw lacquer, snowman-like polystyrene (PS)-urushiol lanthanum (ULa) Janus composite particles were synthesized by emulsion swelling-assisted protrusion from PS/ULa core-shell composite microspheres. The morphology and chemical composition of the PS/ULa composite microspheres and the PS-ULa Janus composite particles were investigated with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR). The PS-ULa Janus particles were compartmentalized into two parts, each with a different morphology and chemical composition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!