Vacuoles of several types can be observed in pollen throughout its development. Their physiological significance reflects the complexity of the biological process leading to functional pollen grains. Vacuolisation always occurs during pollen development but when ripe pollen is shed the extensive translucent vacuoles present in the vegetative parts in previous stages are absent. Vacuole functions vary according to developmental stage but in ripe pollen they are mainly storage sites for reserves. Vacuoles cause pollen to increase in size by water accumulation and therefore confer some degree of resistance to water stress. Modalities of vacuolisation occur in pollen in the same manner as in other tissues. In most cases, autophagic vacuoles degrade organelles, as in the microspore after meiosis, and can be regarded as cytoplasm clean-up following the transition from the diploid sporophytic to the haploid gametophytic state. This also occurs in the generative cell but not in sperm cells. Finally, vacuoles have a function when microspores are used for pollen embryogenesis in biotechnology being targets for stress induction and afterwards contributing to cytoplasmic rearrangement in competent microspores.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-011-1462-4 | DOI Listing |
Microsc Res Tech
January 2025
Programa de Pós-graduação Em Recursos Genéticos Vegetais, Universidade Federal Do Recôncavo da Bahia (UFRB), Programa de Pós-graduação Em Recursos Genéticos Vegetais, Cruz das Almas, Bahia, Brazil.
The genus Wittmackia has 44 species distributed in two centers of diversity: the Brazilian clade and the Caribbean clade. The Brazilian clade includes 29 species, with geographic distribution concentrated in the Northeast of Brazil. This study reports the morphology, ultrastructure, pollen viability and stigma receptivity by different microscopy techniques of 23 species of the genus Wittmackia endemic to Brazil and occurring in Atlantic Forest areas.
View Article and Find Full Text PDFFoods
January 2025
Key Laboratory of Geriatric Nutrition and Health, School of Food and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China.
The 'Jingbaili' pear is a national geographical indication product of China, featuring an oblate shape and being rich in nutrients. But the quality of the 'Jingbaili' pear is unstable. Xenia can cause changes in the quality of pears, but the effect of xenia on the 'Jingbaili' pear is unknown, and its mechanism is still unclear.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Earth and Life Institute-Agronomy, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (), an entomophilous crop of growing interest for sustainable agriculture.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
Adenosine monophosphate (AMP) is a hydrolysis product of adenosine triphosphate (ATP) and adenosine diphosphate (ADP). In mammalian cells, extracellular AMP functions as a signaling molecule by binding to adenosine A1 receptors, thereby activating various intracellular signaling pathways. However, the role of extracellular AMP in plant cells remains largely unclear, and homologs of A1 receptors have not been identified.
View Article and Find Full Text PDFPlants (Basel)
December 2024
College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China.
β-1,3-Glucanases (Glu) are key enzymes involved in plant defense and physiological processes through the hydrolysis of β-1,3-glucans. This study provides a comprehensive analysis of the β-1,3-glucanase gene family in wolfberry (), including their chromosomal distribution, evolutionary relationships, and expression profiles. A total of 58 genes were identified, distributed across all 12 chromosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!