Genome sequence of Streptomyces sp. strain Tü6071.

J Bacteriol

Institute of Pharmaceutical Sciences, Pharmaceutical Bioinformatics, University of Freiburg, Hermann-Herder-Strasse 9, 79104 Freiburg, Germany.

Published: August 2011

Streptomyces sp. Tü6071 is a soil-dwelling bacterium which has a highly active isoprenoid biosynthesis. Isoprenoids are important precursors for biopharmaceutical molecules such as antibiotics or anticancer agents, e.g., landomycin. Streptomyces sp. Tü6071 produces the industrially important terpene glycosides phenalinolactones, which have antibacterial activity against several Gram-positive bacteria. The availability of the genome sequence of Streptomyces sp. Tü6071 allows for understanding the biosynthesis of these pharmaceutical molecules and will facilitate rational genome modification to improve industrial use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3147684PMC
http://dx.doi.org/10.1128/JB.00377-11DOI Listing

Publication Analysis

Top Keywords

streptomyces tü6071
12
genome sequence
8
sequence streptomyces
8
streptomyces
4
streptomyces strain
4
tü6071
4
strain tü6071
4
tü6071 streptomyces
4
tü6071 soil-dwelling
4
soil-dwelling bacterium
4

Similar Publications

Going to extremes: progress in exploring new environments for novel antibiotics.

NPJ Antimicrob Resist

March 2024

Institute of Life Sciences, Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, Wales, UK.

The discoveries of penicillin and streptomycin were pivotal for infection control with the knowledge subsequently being used to enable the discovery of many other antibiotics currently used in clinical practice. These valuable compounds are generally derived from mesophilic soil microorganisms, predominantly Streptomyces species. Unfortunately, problems with the replication of results suggested that this discovery strategy was no longer viable, motivating a switch to combinatorial chemistry in conjunction with existing screening programmes to derive new antimicrobials.

View Article and Find Full Text PDF

Lectins are produced in almost all life forms, can interact with targets (glycans) in a cross-kingdom manner and have served as valuable tools for studying glycobiology. Previously, a bacterial lectin, named Streptomyces hemagglutinin (SHA), was found to agglutinate human type B erythrocytes. However, the binding of SHA to mammalian cell types other than human erythrocytes has not been explored.

View Article and Find Full Text PDF

Identification of a novel butenolide signal system to regulate high production of tylosin in Streptomyces fradiae.

Appl Microbiol Biotechnol

January 2025

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Identifying hormone-like quorum sensing (QS) molecules in streptomycetes is challenging due to low production levels but is essential for understanding secondary metabolite biosynthesis and morphological differentiation. This work reports the discovery of a novel γ-butenolide-type signaling molecule (SFB1) via overexpressing its biosynthetic gene (orf18) in Streptomyces fradiae. SFB1 was found to be essential for production of tylosin through dissociating the binding of its receptor TylP (a transcriptional repressor) to target genes, thus activating the expression of tylosin biosynthetic gene cluster (tyl).

View Article and Find Full Text PDF

Optimizing genome editing efficiency in via a CRISPR/Cas9n-mediated editing system.

Appl Environ Microbiol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China.

is an important bioresource to produce various antibacterial natural products, however, the time-consuming and labor-intensive genome editing toolkits hindered the construction and application of engineered strains, and this study aimed to establish an efficient CRISPR/Cas9n genome editing system in . Initially, the CRISPR/Cas9-mediated editing tool was employed to replace those awkward genome editing tools that relied on homologous recombination, while the off-target Cas9 exhibited high toxicity to Sf01. Therefore, the nickase mutation D10A, high-fidelity mutations including N497A, R661A, Q695A, and Q926A, and thiostrepton-induced promotor P were incorporated into the Cas9 expression cassette, which reduced its toxicity.

View Article and Find Full Text PDF

Genome mining of albocandins A-E from sp. YINM00030.

RSC Adv

January 2025

Key Laboratory of Functional Molecules Analysis and Biotransformation of Universities in Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, School of Medicine, Yunnan University Kunming Yunnan 650500 PR China

The natural products of 2,5-diketopiperazines have attracted considerable attention due to their potent pharmacological activities. Guided by genome mining techniques, five albonoursin analogues, designated as albocandins A-E (1-5), were isolated from sp. YINM00030, an actinomycete sourced from the rhizosphere soil of medicinal plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!