Ace, a known virulence factor and the first identified microbial surface component recognizing adhesive matrix molecule (MSCRAMM) of Enterococcus faecalisis associated with host cell adherence and endocarditis. The Fsr quorum-sensing system of E. faecalis, a two-component signal transduction system, has also been repeatedly linked to virulence in E. faecalis, due in part to the transcriptional induction of an extracellular metalloprotease, gelatinase (GelE). In this study, we discovered that disruption of the Fsr pathway significantly increased the levels of Ace on the cell surface in the latter phases of growth. Furthermore, we observed that, in addition to fsrB mutants, other strains identified as deficient in GelE activity also demonstrated a similar phenotype. Additional experiments demonstrated the GelE-dependent cleavage of Ace from the surface of E. faecalis, confirming that GelE specifically reduces Ace cell surface display. In addition, disruption of the Fsr system or GelE expression significantly improved the ability of E. faecalis to adhere to collagen, which is consistent with higher levels of Ace on the E. faecalis surface. These results demonstrate that the display of Ace is mediated by quorum sensing through the action of GelE, providing insight into the complicated world of Gram-positive pathogen adhesion and colonization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165527PMC
http://dx.doi.org/10.1128/JB.05026-11DOI Listing

Publication Analysis

Top Keywords

fsr quorum-sensing
8
quorum-sensing system
8
surface display
8
disruption fsr
8
levels ace
8
ace cell
8
cell surface
8
ace
7
faecalis
6
surface
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!