The polyglutamine diseases consist of nine neurodegenerative disorders including spinocerebellar ataxia type 17 that is caused by a polyglutamine tract expansion in the TATA box-binding protein. In all polyglutamine diseases, polyglutamine-expanded proteins are ubiquitously expressed throughout the body but cause selective neurodegeneration. Understanding the specific effects of polyglutamine-expanded proteins, when expressed at the endogenous levels, in neurons is important for unravelling the pathogenesis of polyglutamine diseases. However, addressing this important issue using mouse models that either overly or ubiquitously express mutant polyglutamine proteins in the brain and body has proved difficult. To investigate the pathogenesis of spinocerebellar ataxia 17, we generated a conditional knock-in mouse model that expresses one copy of the mutant TATA box-binding protein gene, which encodes a 105-glutamine repeat, selectively in neuronal cells at the endogenous level. Neuronal expression of mutant TATA box-binding protein causes age-dependent neurological symptoms in mice and the degeneration of cerebellar Purkinje cells. Mutant TATA box-binding protein binds more tightly to the transcription factor nuclear factor-Y, inhibits its association with the chaperone protein promoter, as well as the promoter activity and reduces the expression of the chaperones Hsp70, Hsp25 and HspA5, and their response to stress. These findings demonstrate how mutant TATA box-binding protein at the endogenous level affects neuronal function, with important implications for the pathogenesis and treatment of polyglutamine diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3122377PMC
http://dx.doi.org/10.1093/brain/awr146DOI Listing

Publication Analysis

Top Keywords

tata box-binding
24
box-binding protein
24
polyglutamine diseases
16
mutant tata
16
neuronal expression
8
protein
8
chaperone protein
8
nuclear factor-y
8
transcription factor
8
spinocerebellar ataxia
8

Similar Publications

Primary open-angle glaucoma (POAG) is the most common form of glaucoma. This condition leads to optic nerve degeneration and eventually to blindness. Tobacco smoking, alcohol consumption, fast-food diets, obesity, heavy weight lifting, high-intensity physical exercises, and many other bad habits are lifestyle-related risk factors for POAG.

View Article and Find Full Text PDF

Clinically-relevant variants in the STUB1 gene have been associated with an autosomal dominant spinocerebellar ataxia 48 (SCA48), a recently described inherited neurodegenerative condition that is characterised by cognitive and psychiatric changes. To describe the clinical phenotype and genetic findings of three new Australian probands with STUB1 to expand the current understanding of the spectrum of clinical presentation and natural history of SCA48. Clinical and genetic review of patients diagnosed with SCA48 ataxia drawn from our centres.

View Article and Find Full Text PDF

Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) is an essential tool for gene expression analysis; choosing appropriate reference genes for normalization is crucial to ensure data reliability. However, most studies on osteogenic differentiation have had limited success in identifying optimal reference genes. To the best of our knowledge, no optimal reference genes in three-dimensional (3D) osteogenic differentiation culture experiments using human induced pluripotent stem cells (hiPSCs) have been identified.

View Article and Find Full Text PDF

TBP activates DCBLD1 transcription to promote cell cycle progression in cervical cancer.

Funct Integr Genomics

November 2024

Department of Pharmacy, Jilin Cancer Hospital, NO. 1066, Jinhu Road, High-tech District, Changchun, Jilin, 130012, P.R. China.

Discoidin, CUB, and LCCL domain-containing (DCBLD) proteins have been associated with poor prognosis of human cancers. This study investigated the function of DCBLD1 in the development of cervical cancer (CC) and explored its associated mechanism. DCBLD1 was identified as a dysregulated gene in CC via bioinformatics analysis.

View Article and Find Full Text PDF

Inherited infertility: Mapping loci associated with impaired female reproduction.

Am J Hum Genet

December 2024

Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland. Electronic address:

Female infertility is a common and complex health problem affecting millions of women worldwide. While multiple factors can contribute to this condition, the underlying cause remains elusive in up to 15%-30% of affected individuals. In our large genome-wide association study (GWAS) of 22,849 women with infertility and 198,989 control individuals from the Finnish population cohort FinnGen, we unveil a landscape of genetic factors associated with the disorder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!