Thioredoxin regulates adipogenesis through thioredoxin-interacting protein (Txnip) protein stability.

J Biol Chem

Harvard Stem Cell Institute and the Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115 and.

Published: August 2011

Txnip (thioredoxin-interacting protein) is a critical mediator of metabolism and adipogenesis in vivo. The mechanisms of action of Txnip are believed to operate at least in part by inhibiting the redox signaling functions of thioredoxin. We tested here whether Txnip suppressed adipogenesis by inhibiting thioredoxin and discovered a reversal of roles; Txnip inhibits adipogenesis directly, and thioredoxin binding regulates Txnip by enhancing Txnip protein stability. Unlike Txnip, a Txnip mutant that cannot bind thioredoxin (C247S) did not prevent adipocyte differentiation, but was degraded more quickly by proteasomal targeting. Finding that endogenous Txnip protein is also rapidly degraded at the onset of adipogenesis suggested that Txnip degradation is required for adipocyte differentiation. Thioredoxin overexpression stabilized Txnip protein levels to inhibit adipogenesis, and adipogenic stimulants such as insulin promoted Txnip-thioredoxin dissociation to the more labile free Txnip state. As an α-arrestin protein, Txnip has two C-terminal tail PPXY motifs that mediate E3 ubiquitin ligase binding and Txnip protein stability. Mutating the PPXY motifs prevented Txnip degradation, even when thioredoxin binding was lost, and restored the ability of C247S Txnip to inhibit adipogenesis. These studies present a novel reconsideration of Txnip-thioredoxin signaling by showing that thioredoxin regulates the intrinsic function of Txnip as an inhibitor of adipogenesis through protein stabilization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190721PMC
http://dx.doi.org/10.1074/jbc.M111.267666DOI Listing

Publication Analysis

Top Keywords

txnip protein
20
txnip
18
protein stability
12
protein
9
thioredoxin
8
thioredoxin regulates
8
adipogenesis
8
thioredoxin-interacting protein
8
protein txnip
8
stability txnip
8

Similar Publications

Bone-brain communication mediates the amelioration of Polgonatum cyrtonema Hua polysaccharide on fatigue in chronic sleep-deprived mice.

Int J Biol Macromol

January 2025

Engineering Research Centre of Bioprocess of Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China; School of Food and Biological Engineering, Hefei University of Technology, No. 193 Tunxi Road, Hefei 230009, People's Republic of China. Electronic address:

This study aimed to investigate the anti-fatigue efficacy and underlying mechanisms of Polygonatum cyrtonema Hua polysaccharide (PCP) in chronic sleep-deprived mice. Following three weeks of oral administration, PCP demonstrated significant efficacy in alleviating fatigue symptoms. This was evidenced by the prolonged swimming and rotarod time in the high-dose group of PCP, which increased by 73 % and 64 %, respectively.

View Article and Find Full Text PDF

Endoplasmic reticulum stress (ERS) can activate pyroptosis through CHOP and TXNIP; however, the correlation between this process and the formation of kidney stones has not been reported. The purpose is to investigate the effects of calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) on ERS and pyroptosis in HK-2 cells and to explore the formation mechanism of calcium oxalate stones. HK-2 cells were injured by 3 μm COM and COD.

View Article and Find Full Text PDF

Glaucoma is a leading cause of irreversible blindness, often associated with elevated intraocular pressure (IOP) due to trabecular meshwork (TM) dysfunction. Diabetes mellitus (DM) is recognized as a significant risk factor for glaucoma; however, the molecular mechanisms through which hyperglycemia affects TM function remain unclear. This study investigated the impact of high glucose on gene expression in human TM (HTM) cells to uncover pathways that contribute to TM dysfunction and glaucoma pathogenesis under diabetic conditions.

View Article and Find Full Text PDF

Xanthohumol attenuates TXNIP-mediated renal tubular injury in vitro and in vivo diabetic models.

J Nat Med

January 2025

Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.

Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia.

View Article and Find Full Text PDF

Identification of immune suppressor candidates utilizing comparative transcriptional profiling in histiocytic sarcoma.

Cancer Immunol Immunother

January 2025

Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Histiocytic sarcoma (HS) is a rare yet lethal malignancy with no established standard of care therapies. A lack of pre-clinical models limits our understanding of HS pathogenesis and identification of therapeutic targets. Canine HS shares multiple clinical and genetic similarities with human HS, supporting its use as a unique translational model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!