A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polyelectrolyte complexes: bulk phases and colloidal systems. | LitMetric

Polyelectrolyte complexes: bulk phases and colloidal systems.

J Colloid Interface Sci

Laboratory of Physical Chemistry and Colloid Science, Wageningen University, PO Box 8038, 6700 EK Wageningen, The Netherlands.

Published: September 2011

When aqueous solutions of polycations and polyanions are mixed, polyelectrolyte complexes form. These are usually insoluble in water, so that they separate out as a new concentrated polymer phase, called a complex coacervate. The behavior of these complexes is reviewed, with emphasis on new measurements that shed light on their structural and mechanical properties, such as cohesive energy, interfacial tension, and viscoelasticity. It turns out that stoichiometric complexes can be considered in many respects as pseudo-neutral, weakly hydrophobic polymers, which are insoluble in water, but become progressively more soluble as salt is added. In fact, the solubility-enhancing effect of salt is quite analogous to that of temperature for polymers in apolar solvents. Since two-phase systems can be prepared in colloidal form, we also discuss several kinds of colloids or 'microphases' that can arise due to polyelectrolyte complexation, such as thin films, 'zipper' brushes, micelles, and micellar networks. A characteristic feature of these charge-driven two-phase systems is that two polymeric ingredients are needed, but that some deviation from strict stoichiometry is tolerated. This turns out to nicely explain how and when the layer-by-layer method works, how a 'leverage rule' applies to the density of the 'zipper brush', and why soluble complexes or micelles appear in a certain window of composition. As variations on the theme, we discuss micelles with metal ions in the core, due to incorporation of supramolecular coordination polyelectrolytes, and micellar networks, which form a new kind of physical gels with unusual properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2011.05.080DOI Listing

Publication Analysis

Top Keywords

polyelectrolyte complexes
8
insoluble water
8
two-phase systems
8
micellar networks
8
complexes bulk
4
bulk phases
4
phases colloidal
4
colloidal systems
4
systems aqueous
4
aqueous solutions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!