An alcohol dehydrogenase gene, adh1, has been identified in the vascular wilt fungus Fusarium oxysporum f. sp. lycopersici. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that adh1 is highly expressed in mycelia grown in potato dextrose liquid medium (PDB) under hypoxic conditions, as compared to mycelia grown under aerobic conditions. One spontaneous allyl alcohol-resistant (Ally(R)) mutant exhibited insertion of an incomplete F.oxysporum transposable element, while another mutant contained a short (13 nucleotide) deletion, in both cases interrupting the coding region of the adh1 gene. These mutations caused deficiency in Adh activity due to loss of the main constitutive isoform of Adh1, as well as alteration of different physiological parameters related to carbon and energy metabolism, including the ability to use ethanol as a carbon source under aerobic conditions; impaired growth under hypoxic conditions with glucose as the carbon source; and diminished production of ethanol in glucose-containing medium. Interestingly, the adh1 mutations resulted in a significant delay in fungal disease development in tomato plants. Complementation with the wild-type adh1 allele repaired all defects caused by mutation, indicating that the product of the adh1 gene has dual enzymatic functions (fermentative and oxidative), depending on culture conditions, and is also required for full fungal virulence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fgb.2011.06.004 | DOI Listing |
J Fungi (Basel)
December 2024
ICAR-National Research Center for Banana, Plant Pathology Division, Tiruchirappalli 620102, Tamil Nadu, India.
wilt of banana is a major production constraint in India, prompting banana growers to replace bananas with less remunerative crops. Effective disease management practices thus need to be developed and implemented to prevent further spread and damage caused by f. sp.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Agricultural College, Yanbian University, Yanji 133002, China.
Cucumber wilt disease, caused by f. sp. (FOC), is a major threat to cucumber production, especially in greenhouses.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China.
This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in (), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China.
This study characterized an endophytic fungus, DJE2023, isolated from healthy banana sucker of the cultivar (cv.) Dajiao. Its potential as a biocontrol agent against banana Fusarium wilt was assessed, aiming to provide a novel candidate strain for the biological control of the devastating disease.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Embrapa Mandioca e Fruticultura, Rua Embrapa s/n CP 007, Bairro Chapadinha, Cruz das Almas 44380-000, Bahia, Brazil.
wilt is a soil borne fungal disease that has devastated banana production in plantations around the world. Most Cavendish-type bananas are susceptible to strains of f. sp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!