Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The application of biological responses of tumours to predict clinical responses to treatment represents a challenging goal with the potential to inform treatment decisions and improve outcome. If tumour cell death is the result of the inability of a cell to repair complex DNA damage, and if γH2AX foci mark sites of unrepaired double-strand breaks, then it may be possible to use residual γH2AX foci to identify treatment-resistant tumour cells early in the course of therapy. This review will highlight some of the evidence that supports the idea that residual γH2AX foci, within certain limitations, may be useful as an early indicator of tumour response to radiotherapy in situ, either alone or in combination with chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.radonc.2011.05.055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!