We aimed to investigate the application of adipose-derived stromal cells in the treatment of stress urinary incontinence (SUI). Animal models of stress urinary incontinence were established with Sprague-Dawley female rats by complete cutting of the pudendal nerve. Rat adipose-derived stromal cells were isolated, cultured and successfully transplanted into animal models. Effects of stem cell transplantation were evaluated through urodynamic testing and morphologic changes of the urethra and surrounding tissues before and after transplantation. Main urodynamic outcome measures were measured. Intra-bladder pressure and leak point pressure were measured during filling phase. Morphologic examinations were performed. Transplantation of adipose-derived stem cells significantly strengthened local urethral muscle layers and significantly improved the morphology and function of sphincters. Urodynamic testing showed significant improvements in maximum bladder capacity, abdominal leak point pressure, maximum urethral closure pressure, and functional urethral length. Morphologic changes and significant improvement in urination control were consistent over time. It was concluded that periurethral injection of adipose-derived stromal cells improves function of the striated urethral sphincter, resulting in therapeutic effects on SUI. Reconstruction of the pelvic floor through transplantation of adipose-derived cells is a minimally invasive and effective treatment for SUI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tice.2011.04.003DOI Listing

Publication Analysis

Top Keywords

adipose-derived stromal
16
stress urinary
12
urinary incontinence
12
stromal cells
12
cell transplantation
8
treatment stress
8
animal models
8
urodynamic testing
8
morphologic changes
8
leak point
8

Similar Publications

Effect of age, harvest site and body mass index on the cell composition of the stromal vascular fraction.

Plast Reconstr Surg

January 2025

Department of Plastic & Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200011, Shanghai, China.

Background: The stromal vascular fraction (SVF) of adipose tissue has now been widely used in plastic surgeries, clinical trials and therapies. However, the cell composition of SVF undergoes dynamic changes during aging and obesity, which may influence the efficacy of the SVF. This study analyzed the effects of age, harvest site and body mass index on the cell composition of the SVF.

View Article and Find Full Text PDF

Correction: Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea.

Cell Death Dis

January 2025

The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College, Suzhou, Jiangsu, 215123, China.

View Article and Find Full Text PDF

Stromal vascular fraction (SVF) is a heterogeneous collection of cells obtained from adipose tissue through lipoaspiration and is an alter-native intraarticular treatment option, especially in osteoarthritis (OA). The anti-inflammatory and extracellular tissue repair-stimulating properties of SVF increase its effectiveness in regeneration and repair mechanisms. One of the most common symptoms of hemophilia A and B is hemophilic arthropathy (HA).

View Article and Find Full Text PDF

Combination of rapamycin and adipose-derived mesenchymal stromal cells enhances therapeutic potential for osteoarthritis.

Stem Cell Res Ther

January 2025

IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.

Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.

View Article and Find Full Text PDF

Obesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!