The increasing number of disease-causing mutations demands a simple, direct, and cost-effective diagnostic genotyping technique capable of detecting multiple mutations. This study validated the efficacy of a novel melting curve analysis-based genotyping assay (MeltPro HBB assay) for 24 β-thalassemia mutations in the Chinese population. The diagnostic potential of this assay was evaluated in 1022 pretyped genomic DNA samples, including 909 clinical cases of β-thalassemia minor or major, using a double-blind analysis in a multicenter validation study. Reproducibility of the assay was 100%, and the limit of detection was 10 pg per reaction. All 24 β-thalassemia mutations were accurately genotyped, and β-thalassemia genotypes were correctly determined in all 1022 samples, yielding overall sensitivity and specificity of 100%. The concordance rate was 99.4% between this assay and the reference method. It was concluded that the MeltPro HBB assay is useful for reliable genotyping of multiple β-thalassemia mutations in clinical settings and may have potential as a versatile method for rapid genotyping of known mutations because of its high throughput, accuracy, ease of use, and low cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123802PMC
http://dx.doi.org/10.1016/j.jmoldx.2011.03.005DOI Listing

Publication Analysis

Top Keywords

β-thalassemia mutations
16
melting curve
8
multicenter validation
8
meltpro hbb
8
hbb assay
8
assay
7
mutations
7
β-thalassemia
6
genotyping
5
curve analysis--based
4

Similar Publications

Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.

View Article and Find Full Text PDF

Sleep alterations have been described in several neurodegenerative diseases yet are currently poorly characterized in amyotrophic lateral sclerosis (ALS). This study investigates sleep macroarchitecture and related hypothalamic signaling disruptions in ALS. Using polysomnography, we found that both patients with ALS as well as asymptomatic and mutation carriers exhibited increased wakefulness and reduced non-rapid eye movement sleep.

View Article and Find Full Text PDF

Primary mitochondrial disorders are most often caused by deleterious mutations in the mitochondrial DNA (mtDNA). Here, we used a mitochondrial DddA-derived cytosine base editor (DdCBE) to introduce a compensatory edit in a mouse model that carries the pathological mutation in the mitochondrial transfer RNA (tRNA) alanine (mt-tRNA) gene. Because the original m.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) driven by the mutation presents a formidable health challenge because of limited treatment options. MRTX1133 is a highly selective and first-in-class KRAS-G12D inhibitor under clinical development. Here, we report that the advanced glycosylation end product-specific receptor (AGER) plays a key role in mediating MRTX1133 resistance in PDAC cells.

View Article and Find Full Text PDF

A phytoplasma effector suppresses insect melanization immune response to promote pathogen persistent transmission.

Sci Adv

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.

Insect melanization triggered by the conversion of prophenoloxidase to active phenoloxidase via serine proteases (SPs) is an important immediate immune response. However, how phytoplasmas evade this immune response to promote their propagation in insect vectors remains unknown. Here, we demonstrate that infection of leafhopper vectors with rice orange leaf phytoplasma (ROLP) activates the mild melanization response in hemolymph.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!