AI Article Synopsis

  • The study evaluates how commonly used methods for comparing protein structures (SAP, TM-align, and DALI) might misrepresent structural similarity due to their reliance on statistical significance.
  • A novel method using topological descriptions is introduced to independently assess the accuracy of structural alignments and their ability to establish meaningful correlations.
  • The findings reveal that while high alignment scores often correlate with low structural differences, some pairs with significant scores show substantial structural discrepancies, raising questions about the reliability of current assessments in protein fold space.

Article Abstract

Protein structure comparison by pairwise alignment is commonly used to identify highly similar substructures in pairs of proteins and provide a measure of structural similarity based on the size and geometric similarity of the match. These scores are routinely applied in analyses of protein fold space under the assumption that high statistical significance is equivalent to a meaningful relationship, however the truth of this assumption has previously been difficult to test since there is a lack of automated methods which do not rely on the same underlying principles. As a resolution to this we present a method based on the use of topological descriptions of global protein structure, providing an independent means to assess the ability of structural alignment to maintain meaningful structural correspondances on a large scale. Using a large set of decoys of specified global fold we benchmark three widely used methods for structure comparison, SAP, TM-align and DALI, and test the degree to which this assumption is justified for these methods. Application of a topological edit distance measure to provide a scale of the degree of fold change shows that while there is a broad correlation between high structural alignment scores and low edit distances there remain many pairs of highly significant score which differ by core strand swaps and therefore are structurally different on a global level. Possible causes of this problem and its meaning for present assessments of protein fold space are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145973PMC
http://dx.doi.org/10.1016/j.compbiolchem.2011.04.008DOI Listing

Publication Analysis

Top Keywords

structural alignment
12
large scale
8
protein structure
8
structure comparison
8
protein fold
8
fold space
8
fold
6
structural
5
exploring limits
4
limits fold
4

Similar Publications

Preparation of Hydroxyapatite-Aligned Collagen Sheets and Their Evaluation for Fibroblast Adhesion and Collagen Secretion.

ACS Biomater Sci Eng

January 2025

Department of Materials Science and Engineering, School of Materials and Chemical Technology, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

The structure of many native tissues consists of aligned collagen (Col) fibrils, some of which are further composited with dispersed hydroxyapatite (HAp) nanocrystals. Accurately mimicking this inherent structure is a promising approach to enhance scaffold biocompatibility in tissue engineering. In this study, biomimetic sheets composed of highly aligned Col fibrils were fabricated using a plastic compression and tension method, followed by the deposition of HAp nanocrystals on the surface via an alternate soaking method.

View Article and Find Full Text PDF

Fully Atomistic Molecular Dynamics Simulation of Ice Nucleation Near an Antifreeze Protein.

J Am Chem Soc

January 2025

Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, Kowloon 999077, China.

Heterogeneous ice nucleation is a widespread phenomenon in nature. Despite extensive research on ice nucleation near biological antifreeze proteins, a probe for ice nucleation and growth processes at the atomic level is still lacking. Herein, we present simulation evidence of the heterogeneous ice nucleation process on the ice-binding surface (IBS) of the antifreeze protein (TmAFP).

View Article and Find Full Text PDF

We report an experimental study on how topological defects induced by cylindrical air inclusions in the ferroelectric nematic liquid crystal RM734 are influenced by ionic doping, including an ionic surfactant and ionic polymer. Our results show that subtle differences in molecular structure can lead to distinct surface alignments and topological defects. The ionic surfactant induces a planar alignment, with two -1/2 line defects adhering to the cylindrical bubble surface.

View Article and Find Full Text PDF

[2Fe-2S] model compounds.

Chem Commun (Camb)

January 2025

Department of Chemistry, National Central University, Taoyuan 32001, Taiwan.

This feature article reviews the synthesis, structural comparison, and physical properties of [2Fe-2S] model compounds, which serve as vital tools for understanding the structure and function of Fe-S clusters in biological systems. We explore various synthetic methods for constructing [2Fe-2S] cores, offering insights into their biomimetic relevance. A comprehensive analysis and comparison of Mössbauer spectroscopy data between model compounds and natural protein systems are provided, highlighting the structural and electronic parallels.

View Article and Find Full Text PDF

A Fish-Gill-Inspired Biomimetic Multiscale-Ordered Hydrogel-Based Solar Water Evaporator for Highly Efficient Salt-Rejecting Seawater Desalination.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!