Innovation in the field of diagnostic imaging is based primarily on the availability of new and improved equipment that opens the door for new clinical applications. Payments for these imaging procedures are subject to complex Medicare price control schemes, affecting incentives for appropriate use and innovation. Achieving a "dynamically efficient" health care system-one that elicits a socially optimal amount of innovation-requires that innovators be rewarded in relation to the value they add and can demonstrate with evidence. The authors examine how and whether value-based reimbursement for diagnostic imaging services might better reward innovation explicitly for expected improvements in health and economic outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.acra.2011.04.007 | DOI Listing |
J Imaging Inform Med
January 2025
School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA.
Vision transformer (ViT)and convolutional neural networks (CNNs) each possess distinct strengths in medical imaging: ViT excels in capturing long-range dependencies through self-attention, while CNNs are adept at extracting local features via spatial convolution filters. While ViT may struggle with capturing detailed local spatial information, critical for tasks like anomaly detection in medical imaging, shallow CNNs often fail to effectively abstract global context. This study aims to explore and evaluate hybrid architectures that integrate ViT and CNN to leverage their complementary strengths for enhanced performance in medical vision tasks, such as segmentation, classification, reconstruction, and prediction.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Orthopedic Surgery, Arrowhead Regional Medical Center, Colton, CA, USA.
Rib pathology is uniquely difficult and time-consuming for radiologists to diagnose. AI can reduce radiologist workload and serve as a tool to improve accurate diagnosis. To date, no reviews have been performed synthesizing identification of rib fracture data on AI and its diagnostic performance on X-ray and CT scans of rib fractures and its comparison to physicians.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Leiden University Medical Center (LUMC), Leiden, the Netherlands.
Rising computed tomography (CT) workloads require more efficient image interpretation methods. Digitally reconstructed radiographs (DRRs), generated from CT data, may enhance workflow efficiency by enabling faster radiological assessments. Various techniques exist for generating DRRs.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Spruce St., Philadelphia, PA, 19104, USA.
Integration of artificial intelligence (AI) into radiology practice can create opportunities to improve diagnostic accuracy, workflow efficiency, and patient outcomes. Integration demands the ability to seamlessly incorporate AI-derived measurements into radiology reports. Common data elements (CDEs) define standardized, interoperable units of information.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
Purpose: The study explores the role of multimodal imaging techniques, such as [F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!