Sialidase (EC 3.2.1.18) removes sialic acid from sialoglycoconjugates. Since sialidase extracellularly applied to the rat hippocampus influences many neural functions, including synaptic plasticity and innervations of glutamatergic neurons, endogenous sialidase activities on the extracellular membrane surface could also affect neural functions. However, the distribution of sialidase activity in the brain remains unknown. To visualize extracellular sialidase activity on the membrane surface in the rat brain, acute brain slices were incubated with 5-bromo-4-chloroindol-3-yl-α-d-N-acetylneuraminic acid (X-Neu5Ac) and Fast Red Violet LB (FRV LB) at pH 7.3. After 1h, myelin-abundant regions showed intense fluorescence in the rat brain. Although the hippocampus showed weak fluorescence in the brain, mossy fiber terminals in the hippocampus showed relatively intense fluorescence. These fluorescence intensities were attenuated with a sialidase-specific inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA, 1mM). Additionally, the fluorescence intensities caused by X-Neu5Ac and FRV LB were correlated with the sialidase activity measured with 4-methylumbelliferyl-α-d-N-acetylneuraminic acid (4MU-Neu5Ac), a classical substrate for quantitative measurement of sialidase activity, in each brain region. Therefore, staining with X-Neu5Ac and FRV LB is specific for sialidase and useful for quantitative analysis of sialidase activities. The results suggest that white matter of the rat brain has intense sialidase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2011.06.017DOI Listing

Publication Analysis

Top Keywords

sialidase activity
24
rat brain
16
sialidase
10
brain
8
neural functions
8
sialidase activities
8
membrane surface
8
activity brain
8
intense fluorescence
8
fluorescence intensities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!