The cooperative O(2)-binding of hemoglobin (Hb) have been assumed to correlate to change in the quaternary structures of Hb: T(deoxy)- and R(oxy)-quaternary structures, having low and high O(2)-affinities, respectively. Heterotropic allosteric effectors have been shown to interact not only with deoxy- but also oxy-Hbs causing significant reduction in their O(2)-affinities and the modulation of cooperativity. In the presence of two potent effectors, L35 and inositol hexaphosphate (IHP) at pH 6.6, Hb exhibits extremely low O(2)-affinities (K(T)=0.0085mmHg(-1) and K(R)=0.011mmHg(-1)) and thus a very low cooperativity (K(R)/K(T)=1.3 and L(0)=2.4). (1)H-NMR spectra of human adult Hb with these two effectors were examined in order to determine the quaternary state of Hb in solution and to clarify the correlation between the O(2)-affinities and the structural change of Hb caused by the heterotropic effectors. At pH 6.9, (1)H-NMR spectrum of deoxy-Hb in the presence of L35 and IHP showed a marker of the T-quaternary structure (the T-marker) at 14ppm, originated from inter- dimeric α(1)β(2)- (or α(2)β(1)-) hydrogen-bonds, and hyperfine-shifted (hfs) signals around 15-25ppm, caused by high-spin heme-Fe(II)s. Upon addition of O(2), the hfs signals disappeared, reflecting that the heme-Fe(II)s are ligated with O(2), but the T-marker signals still remained, although slightly shifted and broadened, under the partial pressure of O(2) (P(O2)) of 760mmHg. These NMR results accompanying with visible absorption spectroscopy and visible resonance Raman spectroscopy reveal that oxy-Hb in the presence of L35 and IHP below pH 7 takes the ligated T-quaternary structure under the P(O2) of 760mmHg. The L35-concentration dependence of the T-marker in the presence of IHP indicates that there are more than one kind of L35-binding sites in the ligated T-quaternary structure. The stronger binding sites are probably intra-dimeric binding sites between α(1)G- and β(1)G-helices, and the other weaker binding site causes the R→T transition without release of O(2). The fluctuation of the tertiary structure of Hb seems to be caused by both the structural perturbation of α(1)β(1) (or α(2)β(2)) intra-dimeric interface, where the stronger L35-binding sites exist, and by the IHP-binding to the α(1)α(2)- (or β(1)β(2)-) cavity. The tertiary structural fluctuation induced by the allosteric effectors may contribute to the significant reduction of the O(2)-affinity of oxy-Hb, which little depends on the quaternary structures. Therefore, the widely held assumptions of the structure-function correlation of Hb - [the deoxy-state]=[the T-quaternary structure]=[the low O(2)-affinity state] and [the oxy-state]=[the R-quaternary structure]=[the high O(2)-affinity state] and the O(2)-affiny of Hb being regulated by the T/R-quaternary structural transition - are no longer sustainable. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2011.06.004 | DOI Listing |
Biophys J
July 2023
Department of Physics, Drexel University, Philadelphia, Pennsylvania. Electronic address:
The drug voxelotor (commercially known as Oxbryta) has been approved by the US Food and Drug Administration for the treatment of sickle cell disease. It is known to reduce disease-causing sickling by inhibiting the transformation of the non-polymerizing, high-oxygen-affinity R quaternary structure of sickle hemoglobin into its polymerizing, low-affinity T quaternary structure. It has not been established whether the binding of the drug has anti-sickling effects beyond restricting the change of quaternary structure.
View Article and Find Full Text PDFBiophys J
July 2022
Department of Physiology, Division of Biophysics, Jichi Medical University, Shimotsuke, Tochigi, Japan.
Proc Natl Acad Sci U S A
June 2020
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520;
The pathology of sickle cell disease is caused by polymerization of the abnormal hemoglobin S upon deoxygenation in the tissues to form fibers in red cells, causing them to deform and occlude the circulation. Drugs that allosterically shift the quaternary equilibrium from the polymerizing T quaternary structure to the nonpolymerizing R quaternary structure are now being developed. Here we update our understanding on the allosteric control of fiber formation at equilibrium by showing how the simplest extension of the classic quaternary two-state allosteric model of Monod, Wyman, and Changeux to include tertiary conformational changes provides a better quantitative description.
View Article and Find Full Text PDFJ Phys Chem B
December 2018
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health, Bethesda , Maryland 220892-0520 , United States.
It is well-known that tetrameric hemoglobin binds ligands cooperatively by undergoing a ligand-induced T → R quaternary structure transition, a structure-function relationship that has long served as a model system for understanding allostery in proteins. However, kinetic studies of the reverse, R → T quaternary structure transition following photolysis of carbonmonoxyhemoglobin (HbCO) reveal complex behavior that may be better explained by the presence of two different R quaternary structures coexisting in thermal equilibrium. Indeed, we report here time-resolved small- and wide-angle X-ray scattering (SAXS/WAXS) patterns of HbCO following a temperature jump that not only provide unambiguous evidence for more than one R state, but also unveil the time scale for interconversion between them.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2018
Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
Protein dynamics of human adult hemoglobin and its mutants restricted in R and T quaternary states following ligand photolysis were studied by time-resolved resonance Raman spectroscopy. In the time-resolved spectra, we observed spectral changes of in-plane stretching modes of heme and the iron-histidine stretching mode of the Fe-His bond for all the hemoglobin samples. The βD99N mutant, which adopts the R state in both the ligand-bound and the deoxy forms, showed similar temporal behaviors in time-resolved resonance Raman spectra as wild-type recombinant hemoglobin until 10 μs, consistent with the fact that the mutant undergoes only the tertiary structural changes in the R state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!