Emergency electroencephalography (EEG) is indicated in the diagnosis and management of non-convulsive status epilepticus (NCSE) underlying an alteration in the level of consciousness. NCSE is a frequent, treatable, and under-diagnosed entity that can result in neurological injury. This justifies the need for EEG availability in the emergency department (ED). There is now emerging evidence for the potential benefits of EEG monitoring in various acute conditions commonly encountered in the ED, including convulsive status after treatment, breakthrough seizures in chronic epilepsy patients who are otherwise controlled, acute head trauma, and pseudo seizures. However, attempts to allow for routine EEG monitoring in the ED face numerous obstacles. The main hurdles to an optimized use of EEG in the ED are lack of space, the high cost of EEG machines, difficulty of finding time, as well as the expertise needed to apply electrodes, use the machines, and interpret the recordings. We reviewed the necessity for EEGs in the ED, and to meet the need, we envision a product that is comprised of an inexpensive single-use kit used to wirelessly collect and send EEG data to a local and/or remote neurologist and obtain an interpretation for managing an ED patient.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145557 | PMC |
http://dx.doi.org/10.1186/1865-1380-4-36 | DOI Listing |
Brain Res
January 2025
Department of Computing Science, University of Alberta Edmonton Alberta Canada; Alberta Machine Intelligence Institute Edmonton Alberta Canada; Canada Institute for Advanced Research (CIFAR) AI Chair, Canada.
Humans are excellent at modifying our behaviour depending on context. For example, humans will change how they explore when losses are possible compared to when they are not possible. However, it remains unclear what specific cognitive and neural processes are modulated when exploring in different contexts.
View Article and Find Full Text PDFNeuroimage
January 2025
Movement & Neuroscience, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark.
When engaged in dynamic or continuous movements, action initiation involves modifying an ongoing motor program rather than initiating it from rest. Event-related theta synchronization over sensorimotor areas is a neurophysiological marker for modifying motor programs. We used electroencephalography (EEG) to examine how task complexity and age affect event-related synchronization (ERS) in the theta band during a dynamic bimanual, visuomotor pinch force task.
View Article and Find Full Text PDFJ Affect Disord
January 2025
Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Austria. Electronic address:
Background: Anesthesia depth influences seizure quality in patients undergoing electroconvulsive therapy (ECT). EEG-based neuromonitoring has been shown to detect adequate anesthesia depth for ECT. Anesthesia depth-guided ECT management may therefore be a reliable alternative to the predetermined anesthesia-to-stimulation time interval.
View Article and Find Full Text PDFClin Neurophysiol
January 2025
Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China. Electronic address:
Objective: Sleep-related hypermotor epilepsy (SHE) is a relatively uncommon epilepsy syndrome, characterized by seizures closely related to the sleep cycle. This study aims to explore interictal electroencephalographic (EEG) characteristics in SHE.
Methods: We compared EEG data from 20 patients with SHE, 20 patients with focal epilepsy (FE), and 14 healthy controls, carefully matched for age, sex, education level, epilepsy duration, and drug-resistant epilepsy.
Clin Neurophysiol
January 2025
Institute for Research and Development on Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina; Center for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), National University of Entre Ríos (UNER), Oro Verde, Argentina. Electronic address:
Objective: To describe the cortical evoked potentials in response to radiofrequency stimulation (RFEPs) in human volunteers.
Methods: Seventeen healthy volunteers participated in an experimental session in which radiofrequency (RF) and electrical (ES) stimulation were applied to the dorsum of the hands and feet. EEG was recorded to evaluate evoked responses for each stimulus modality and stimulation site.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!