Our long-term objective is to devise reliable methods to generate biological replacement teeth exhibiting the physical properties and functions of naturally formed human teeth. Previously, we demonstrated the successful use of tissue engineering approaches to generate small, bioengineered tooth crowns from harvested pig and rat postnatal dental stem cells (DSCs). To facilitate characterizations of human DSCs, we have developed a novel radiographic staging system to accurately correlate human third molar tooth developmental stage with anticipated harvested DSC yield. Our results demonstrated that DSC yields were higher in less developed teeth (Stages 1 and 2), and lower in more developed teeth (Stages 3, 4, and 5). The greatest cell yields and colony-forming units (CFUs) capability was obtained from Stages 1 and 2 tooth dental pulp. We conclude that radiographic developmental staging can be used to accurately assess the utility of harvested human teeth for future dental tissue engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1525-1594.2010.01200.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!