[I. Metabolic disease: 4. Lipid metabolism abnormalities].

Nihon Naika Gakkai Zasshi

Division of Nephrology and Rheumatology, Department of Internal Medicine, Fukuoka University School of Medicine, Japan.

Published: May 2011

Download full-text PDF

Source
http://dx.doi.org/10.2169/naika.100.1220DOI Listing

Publication Analysis

Top Keywords

metabolic disease
4
disease lipid
4
lipid metabolism
4
metabolism abnormalities]
4
metabolic
1
lipid
1
metabolism
1
abnormalities]
1

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Background: Although novel treatments for Alzheimer's disease (AD) have begun to show modest therapeutic effects, agents that target hallmark AD pathology and offer neuroprotection are desired. Erythropoietin (EPO) is a glycoprotein hormone with neuroprotective effects but is faced with challenges including limited brain uptake and increased hematopoietic side effects with long-term dosing. Therefore, EPO has been modified and bound to a chimeric transferrin receptor monoclonal antibody (cTfRMAb); the latter shuttles EPO past the blood-brain barrier (BBB) into brain parenchyma and reduces its plasma exposure and potential for side effects.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: The Apolipoprotein E4 isoform (ApoE4), encoded by the APOE gene, stands out as the most influential genetic factor in late-onset Alzheimer's disease (LOAD). The ApoE4 isoform contributes to metabolic and neuropathological abnormalities during brain aging, with a strong correlation observed in APOE4-positive Alzheimer's disease cases between phosphorylated tau burden and amyloid deposition. Despite compelling evidence of APOE-mediated neuroinflammation influencing the progression of tau-mediated neurodegeneration, the molecular mechanisms underlying these phenomena remain largely unknown.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China;, Beijing, China.

Background: Individuals with type 2 diabetes mellitus (T2DM) face an increased risk of dementia. Recent discoveries indicate that SGLT2 inhibitors, a newer class of anti-diabetic medication, exhibit beneficial metabolic effects beyond glucose control, offering a potential avenue for mitigating the risk of Alzheimer's disease (AD). However, limited evidence exists regarding whether the use of SGLT2 inhibitors effectively reduces the risk of AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Xuanwu Hospital, Capital Medical University, Beijing, Beijing, China.

Background: Effective early intervention of mild cognitive impairment (MCI) is the key for preventing dementia. However, there is currently no drug for MCI. As a multi-targeted neuroprotective agent, butylphthalide has been demonstrated to repair cognition in patients with vascular cognitive impairment, and has the potential to treat MCI due to Alzheimer's disease (AD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!