The secondary immunoglobulin gene diversification processes, somatic hypermutation (SHM), immunoglobulin gene conversion (GCV), and class switch recombination, are important for efficient humoral immune responses. They require the action of activation-induced cytidine deaminase, an enzyme that deaminates cytosine in the context of single-stranded DNA. The chicken DT40 B-cell line is an important model system for exploring the mechanisms of SHM and GCV, as both processes occur constitutively without the need for stimulation. In addition, standard gene targeting strategies can be used for defined manipulations of the DT40 genome. Thus, these cells represent an excellent model of choice for genetic studies of SHM and GCV. Problems arising from defects in early B-cell development that are of concern when using genetically engineered mice are avoided in this system. Here, we describe how to perform gene targeting in DT40 cells and how to determine the effects of such modifications on SHM and GCV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-61779-139-0_18 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!