Low-intensity laser therapy is based on the excitation of endogenous chromophores in biotissues and free-radical generation could be involved in its biological effects. In this work, the effects of the low-intensity infrared laser on plasma protein content and oxidative stress in blood from Wistar rats were studied. Blood samples from Wistar rats were exposed to low-intensity infrared laser in continuous wave and pulsed-emission modes at different fluencies. Plasma protein content and two oxidative stress markers (thiobarbituric acid-reactive species formation and myeloperoxidase activity) were carried out to assess the effects of laser irradiation on blood samples. Low-intensity infrared laser exposure increases plasma protein content, induces lipid peroxidation, and increases myeloperoxidase activity in a dose- and frequency-dependent way in blood samples. The low-intensity infrared laser increases plasma protein content and oxidative stress in blood samples, suggesting that laser therapy protocols should take into account fluencies, frequencies, and wavelengths of the laser before beginning treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10103-011-0945-7 | DOI Listing |
Acc Chem Res
January 2025
Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.
ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.
View Article and Find Full Text PDFInorg Chem
December 2024
Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany.
A series of seven-coordinated monoporphyrinate rare-earth(III) complexes featuring a novel tripodal tin-chelated trisphosphineoxide scorpionate ligand with the general formula [(TPP)Ln(PPhO)Sn] (Ln = Y, La, Dy, Er, Ho, Yb; TPP = 5,10,15,20-tetraphenylporphyrinate) were synthesized by reactions of the potassium tripodal scorpionate ligand [Sn(PPhO)K] with porphyrinate rare-earth metal chlorides [(TPP)LnCl(dme)] (Ln = Y, Dy, Er, Ho, Yb) or porphyrinate lanthanum borohydride [(TPP)LaBH(thf)]. The complexes were characterized by single-crystal X-ray diffraction, NMR spectroscopy, and ion mobility mass spectrometry. All complexes emit weak red TPP-based fluorescence, accompanied by near-infrared emission of Er, Ho (rather weak), and Yb (relatively intense with a quantum yield of 1% in dichloromethane solution) of the corresponding complexes.
View Article and Find Full Text PDFFront Neurosci
October 2024
Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
Photobiomodulation (PBM) is a non-invasive neuromodulation technique for the brain. Low-intensity near-infrared light (1-500 mw) has demonstrated the ability to improve memory in Alzheimer's disease (AD) model mice, suggesting its potential for AD treatment. However, the impact of PBM on neural oscillations in the hippocampal region affected by AD remains unknown.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang Province, People's Republic of China. Electronic address:
Photothermal therapy (PTT) is an effective cancer treatment that circumvents the resistance caused by chemotherapy drugs. Conventional PTT has a relatively high temperature, which is better able to kill tumor tissues, but it is also more damaging to normal tissues. Mild PTT avoids these high temperatures, but its corresponding killing ability becomes lower and enhances the heat resistance of cancer cells, causing tumor self-protection and reducing the therapeutic effect of PTT.
View Article and Find Full Text PDFBioinformation
August 2024
Department of Conservative Dentistry and Endodontics, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India.
The application of nanoparticles in the form of solution for irrigation, medication and as an additive for sealer/restorative material has been evaluated to improve the antibacterial efficacy in the field of endodontics. Recently developed nanobots are injected into the teeth to destroy pathogens and they are more effective in root canal therapy. They are helical shaped and composed of silicon dioxide with iron embedded into the silica body to provide magnetic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!