Locomotor respiratory coupling patterns in humans have been assessed on the basis of the interaction between different physiological and motor subsystems; these interactions have implications for movement economy. A complex and dynamical systems framework may provide more insight than entrainment into the variability and adaptability of these rhythms and their coupling. The purpose of this study was to investigate the relationship between steady state locomotor-respiratory coordination dynamics and oxygen consumption [Formula: see text] of the movement by varying walking stride frequency from preferred. Twelve male participants walked on a treadmill at a self-selected speed. Stride frequency was varied from -20 to +20% of preferred stride frequency (PSF) while respiratory airflow, gas exchange variables, and stride kinematics were recorded. Discrete relative phase and return map techniques were used to evaluate the strength, stability, and variability of both frequency and phase couplings. Analysis of [Formula: see text] during steady-state walking showed a U-shaped response (P = 0.002) with a minimum at PSF and PSF - 10%. Locomotor-respiratory frequency coupling strength was not greater (P = 0.375) at PSF than any other stride frequency condition. The dominant coupling across all conditions was 2:1 with greater occurrences at the lower stride frequencies. Variability in coupling was the greatest during PSF, indicating an exploration of coupling strategies to search for the coupling frequency strategy with the least oxygen consumption. Contrary to the belief that increased strength of frequency coupling would decrease oxygen consumption; these results conclude that it is the increased variability of frequency coupling that results in lower oxygen consumption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00421-011-2040-y | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory of Obesity and Aging Research, Cardiovascular Branch, National Heart Lung and Blood Institute, NIH, Bethesda, MD 20892.
Mitochondrial endonuclease G (EndoG) contributes to chromosomal degradation when it is released from mitochondria during apoptosis. It is presumed to also have a mitochondrial function because EndoG deficiency causes mitochondrial dysfunction. However, the mechanism by which EndoG regulates mitochondrial function is not known.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Manitoba, Winnipeg, MB, Canada.
Background: Mitochondrial bioenergetics are essential for cellular function, specifically the intricacies of the electron transport chain (ETC), with Complex IV playing a crucial role in unraveling the mechanisms governing energy production. Mathematical models offer a valuable approach to simulate these complex processes, providing insights into normal mitochondrial function and aberrations associated with various diseases, including neurodegenerative disorders. Our research focuses on introducing and refining a mathematical model, emphasizing Complex IV in the ETC, with objectives including incorporating mitochondrial activity modulation using inhibiting and uncoupling reagents, akin to oxygen consumption experiments.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Miami, Coral Gables, FL, USA.
Background: Cerebral blood flow is decreased in mouse models and patients of Alzheimer's disease (AD). We identified that about 2% of cortical capillaries in the APP/PS1 mouse model of AD had stalled blood flow due to neutrophils obstructing capillaries and contributing to vascular inflammation. Neutrophils are more reactive in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Neurology, Mayo Clinic, Rochester, MN, USA.
Background: While disease-modifying treatments that reduce Aβ have been recently approved by the FDA, the identification of novel therapeutic targets and strategies that target underlying mechanisms to delay the AD development are still needed. Abnormal brain energy homeostasis and mitochondria dysfunction are observed early in AD. Therefore, the development of treatments to restore these defects could be beneficial.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Universidade de Brasília, Brasília, Brazil.
Background: Recent research has demonstrated that the consumption of high fat diet (HFD) can lead to metabolic dysfunctions and cognitive impairments in both mice models and humans. Given the potential negative effects of HFD, it is crucial to explore non-pharmacological alternatives that can serve as a potential treatment for both metabolic dysfunctions and behavioral effects induced by HFD. Therefore, the aim of this study is to assess the impact of chronic and intermittent exposure to cold temperature on the metabolic and cognitive changes associated with HFD consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!