Objective: The purpose of this article is to assess the variability of perfusion CT measurements in lung tumors and the effects of motion and duration of data acquisition on perfusion CT parameter values.

Subjects And Methods: Two perfusion CT scans were obtained in 11 patients with lung tumors, 2-7 days apart, using phase 1 scans (30-second breath-hold cine) followed by phase 2 scans (six intermittent helical breath-holds), spanning 125 seconds. Tumor blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability were calculated for phase 1 using all-cine and motion-corrected (rigidly registered) images, both with and without matching phase 2 images (manually or rigidly registered). Variability was assessed by the within-patient coefficient of variation (CV) and Bland-Altman analyses.

Results: BF, BV, MTT, and permeability values varied widely by method of analysis (median BF, 45.3-65.1 mL/min/100 g; median BV, 2.6-3.8 mL/100 g; median MTT, 3.6-4.1 seconds, and median permeability, 13.7-39.3 mL/min/100 g), as did within-patient CVs (10.9-114.4%, 25.3-117.6%, 22.3-51.5%, and 29.6-134.9%, respectively). Parameter values and variability were affected by motion and duration of data analyzed: permeability values doubled when phase 2 images were added to phase 1 data. Overall, the best reproducibility was obtained with registered phase 1 and 2 data, with within-patient CVs of 11.6%, 26.5%, 45.4%, and 30.2%, respectively.

Conclusion: The absolute values and reproducibility of perfusion parameters in lung tumors are markedly influenced by motion and duration of data acquisition. Permeability, in particular, probably requires data acquisition beyond a single breath-hold. The smallest variability in parameter values was obtained with motion correction and extended acquisition durations.

Download full-text PDF

Source
http://dx.doi.org/10.2214/AJR.10.5404DOI Listing

Publication Analysis

Top Keywords

lung tumors
16
motion duration
12
duration data
12
data acquisition
12
reproducibility perfusion
8
perfusion parameters
8
phase scans
8
mtt permeability
8
rigidly registered
8
phase images
8

Similar Publications

Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.

View Article and Find Full Text PDF

Background: The role of activating alterations in the MAPK pathway in predicting immunotherapy efficacy in lung squamous cell carcinoma (LSCC) patients is largely unknown. The aims of the randomized, phase II SQUINT trial were to assess the efficacy of nivolumab plus ipilimumab (NI) versus platinum-based chemotherapy plus nivolumab (N-CT) and to identify clinically available biomarkers of response to immunotherapy in patients with advanced or metastatic LSCC.

Methods: SQUINT was an open-label, randomized, parallel, non-comparative, phase II trial of NI versus N-CT in chemo-naïve, metastatic or recurrent LSCC adult patients.

View Article and Find Full Text PDF

Purpose: Liver and lung metastases demonstrate distinct biological, particularly immunological, characteristics. We investigated whether preoperative complete blood count (CBC) parameters, which may reflect the immune system condition, predict early dissemination to the liver and lungs in colorectal cancer (CRC).

Methods: In this retrospective single-centre study, we included 268 resected CRC cases with complete 2-year follow-up and analysed preoperative CBC for association with early liver or lung metastasis development.

View Article and Find Full Text PDF

Incorporating Lymph Node Size at CT as an N1 Descriptor in Clinical N Staging for Lung Cancer.

Radiology

January 2025

From the Department of Radiology and Research Institute of Radiology (Y.A., S.M.L., J.C., K.H.D., J.B.S.) and Department of Cardiothoracic Surgery (S.H.C.), University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.

Background The ninth edition of the TNM classification for lung cancer revised the N2 categorization, improving patient stratification, but prognostic heterogeneity remains for the N1 category. Purpose To define the optimal size cutoff for a bulky lymph node (LN) on CT scans and to evaluate the prognostic value of bulky LN in the clinical N staging of lung cancer. Materials and Methods This retrospective study analyzed patients who underwent lobectomy or pneumonectomy for lung cancer between January 2013 and December 2021, divided into development (2016-2021) and validation (2013-2015) cohorts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!