The mechanisms underlying distension-evoked peristalsis in the colon are incompletely understood. It is well known that, following colonic distension, 5-hydroxytryptamine (5-HT) is released from enterochromaffin (EC) cells in the intestinal mucosa. It is also known that exogenous 5-HT can stimulate peristalsis. These observations have led some investigators to propose that endogenous 5-HT release from EC cells might be involved in the initiation of colonic peristalsis, following distension. However, because no direct evidence exists to support this hypothesis, the aim of this study was to determine directly whether release of 5-HT from EC cells was required for distension-evoked colonic peristalsis. Real-time amperometric recordings of 5-HT release and video imaging of colonic wall movements were performed on isolated segments of guinea pig distal colon, during distension-evoked peristalsis. Amperometric recordings revealed basal and transient release of 5-HT from EC cells before and during the initiation of peristalsis, respectively. However, removal of mucosa (and submucosal plexus) abolished 5-HT release but did not inhibit the initiation of peristalsis nor prevent the propagation of fecal pellets or intraluminal fluid. Maintained colonic distension by fecal pellets induced repetitive peristaltic waves, whose intrinsic frequency was also unaffected by removal of the submucosal plexus and mucosa, although their propagation velocities were slower. In conclusion, the mechanoreceptors and sensory neurons activated by radial distension to initiate peristalsis lie in the myenteric plexus and/or muscularis externa, and their activation does not require the submucosal plexus, release of 5-HT from EC cells, nor the presence of the mucosa. The propagation of peristalsis and propulsion of liquid or solid content along the colon is entrained by activity within the myenteric plexus and/or muscularis externa and does not require sensory feedback from the mucosa, nor neural inputs arising from submucosal ganglia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpgi.00101.2011 | DOI Listing |
Nat Rev Gastroenterol Hepatol
June 2020
Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St Louis, MO, USA.
The gastrointestinal tract is the only internal organ to have evolved with its own independent nervous system, known as the enteric nervous system (ENS). This Review provides an update on advances that have been made in our understanding of how neurons within the ENS coordinate sensory and motor functions. Understanding this function is critical for determining how deficits in neurogenic motor patterns arise.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2020
Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
The role of endogenous serotonin (5-HT) in gastrointestinal motility is still highly controversial. Although electrochemical techniques allow for direct and real-time recording of biomolecules, the dynamic monitoring of 5-HT release from elastic and tubular intestine during motor reflexes remains a great challenge because of the specific peristalsis patterns and inevitable passivation of the sensing interface. A stretchable sensor with antifouling and decontamination properties was assembled from gold nanotubes, titanium dioxide nanoparticles, and carbon nanotubes.
View Article and Find Full Text PDFDig Dis Sci
August 2014
Giome Academia, Institute of Clinical Medicine, Aarhus University Hospital, Skejby, Brendstrupgaardsvej, 8200, Aarhus, Denmark,
Background And Aims: Differences in contraction characteristics between primary and secondary peristalsis have only been scarcely studied. Recently new measures of contractile activity in the human esophagus were developed. The study aims were to use combined manometry and impedance planimetry [pressure-cross-sectional area (P-CSA)] recordings from healthy volunteers to examine esophageal peristalsis, and, furthermore, to investigate the effect of the motility enhancing drug erythromycin to study differential effects on the two types of contractions.
View Article and Find Full Text PDFFront Neurosci
August 2013
Discipline of Human Physiology and Center for Neuroscience, Flinders University Adelaide, SA, Australia.
Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI) transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT) receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon.
View Article and Find Full Text PDFNeuroscience
June 2013
Discipline of Human Physiology & Center for Neuroscience, Flinders Medical Center, South Australia, Australia.
Recent studies have shown genetic deletion of the gene that synthesizes 5-HT in enteric neurons (tryptophan hydroxylase-2, Tph-2) leads to a reduction in intestinal transit. However, deletion of the Tph-2 gene also leads to major developmental changes in enteric ganglia, which could also explain changes in intestinal transit. We sought to investigate this further by acutely depleting serotonin from enteric neurons over a 24-h period, without the confounding influences induced by genetic manipulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!