Bearing surfaces for total disc arthroplasty: metal-on-metal versus metal-on-polyethylene and other biomaterials.

Spine J

Department of Orthopedic Surgery, PeaceHealth Corp., 1615 Delaware St., Longview, WA 98632-2367, USA.

Published: August 2012

AI Article Synopsis

Article Abstract

Background Context: Concerns about the effect of metallic wear debris from metal-on-metal bearing surfaces in total hip arthroplasty have increased. Some spinal arthroplasty devices include metal-on-metal bearing surfaces.

Purpose: To review the literature for clinical reports of complications because of wear debris from metal-on-metal spinal arthroplasty devices. To review the biology of wear debris from metal-on-metal bearing surfaces drawn from the hip arthroplasty literature and place it in the context of global regulatory actions and clinical and laboratory studies.

Study Design: Literature review.

Methods: To identify clinical reports, the PubMed database from the United States National Library of Medicine was queried using Medical Subject Headings terms and additional keyword terms. In addition, experts from academia and regulatory agencies were questioned regarding their knowledge of reports, including experts who attended the US Food and Drug Administration roundtable in September 2010.

Results: Three case reports and one case series including seven total cases were identified in which abnormal inflammatory reactions and soft-tissue masses after metal-on-metal disc replacements were consistent with pseudotumor and metal hypersensitivity. Spinal cases are present as pain and neurologic symptoms. On plain radiography, there is no clear periprosthetic osteolysis or loosening. On magnetic resonance imaging, there is increased magnetic susceptibility artifact because of metallic debris that renders images inadequate. Computed tomography myelography demonstrates a soft-tissue mass, which exhibits epidural extension surgically. Histologically, large areas of necrotic debris and exudates are interspersed with chronic inflammatory cells. Lymphocyte or macrophage predominance is determined by the rate of wear and the presence of gross, microscopic, or submicron metallic wear debris. The metallurgy of the involved devices is cobalt-chromium-molybdenum (CoCrMo) alloy, and the bearing surface is CoCrMo-on-CoCrMo.

Conclusions: Metal-on-metal spinal arthroplasty devices are subject to postoperative complications because of metallic wear debris with similar clinical, radiographic, histologic, gross anatomic, and device-related features to those found in metal-on-metal bearing surfaces in total hip arthroplasty.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2011.05.008DOI Listing

Publication Analysis

Top Keywords

wear debris
20
bearing surfaces
16
metal-on-metal bearing
16
surfaces total
12
metallic wear
12
debris metal-on-metal
12
hip arthroplasty
12
spinal arthroplasty
12
arthroplasty devices
12
metal-on-metal
8

Similar Publications

This research centers around cast steel 20Mn, which is the material utilized for the ear-picking roller of a corn harvester. The study delves into methods of enhancing its hydrophobicity and wear resistance. Fiber laser-processing technology was employed to fabricate pangolin bionic micro-textures on the material surface, and PVD technology was utilized to deposit a TiN coating.

View Article and Find Full Text PDF

Concentrations of microplastics are both temporally and spatially variable in streamflow. Yet, an overwhelming number of published field studies do not target a range of flow conditions and fail to adequately capture particle transport within the full flow field. Since microplastic flux models rely on the representativeness of available data, current predictions of riverine exports contain substantial error.

View Article and Find Full Text PDF

Quantifying tear exchange during rigid contact lens wear using corneoscleral profilometry: A proof of concept study.

Ophthalmic Physiol Opt

January 2025

Contact Lens and Visual Optics Laboratory, Optometry and Vision Science, Centre for Vision and Eye Research, Queensland University of Technology, Brisbane, Queensland, Australia.

Introduction: Tear exchange during contact lens wear is essential for ocular surface integrity, facilitating debris removal, and maintaining corneal metabolism. Fluorophotometry and fluorogram methods are typically used to measure tear exchange, which require hardware modifications to a slit lamp biomicroscope. This manuscript introduces an alternative method using a corneoscleral profilometer, the Eye Surface Profiler (ESP), to quantify tear exchange during corneal and scleral rigid lens wear by assessing fluorescence intensity changes over time.

View Article and Find Full Text PDF

Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar.

View Article and Find Full Text PDF

Running-In Behavior and Failure Mechanism Between AgCuNi Alloy and Au-Electroplated Layer.

Sensors (Basel)

December 2024

State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China.

To avoid wear and tear of the slip ring due to electrical corrosion, the slip ring needs to undergo the running-in process under atmospheric conditions without current after assembly. To address the urgent demand for long-service capability space conductive slip rings in the aerospace field, the running-in behavior and failure mechanism between the AgCuNi alloy and Au-electroplated layer are investigated using a ball-on-disc tribometer in this paper. The results show that the transfer film composed of Au plays an important role in modifying the friction during the sliding process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!