Paramecium bursaria Chlorella viruses were observed by applying transmission electron microscopy in the native symbiotic system Paramecium bursaria (Ciliophora, Oligohymenophorea) and the green algae Chlorella (Chlorellaceae, Trebouxiophyceae). Virus particles were abundant and localized in the ciliary pits of the cortex and in the buccal cavity of P. bursaria. This was shown for two types of the symbiotic systems associated with two types of Chlorella viruses - Pbi or NC64A. A novel quantitative stereological approach was applied to test whether virus particles were distributed randomly on the Paramecium surface or preferentially occupied certain zones. The ability of the virus to form an association with the ciliate was investigated experimentally; virus particles were mixed with P. bursaria or with symbiont-free species P. caudatum. Our results confirmed that in the freshwater ecosystems two types of P. bursaria -Chlorella symbiotic systems exist, those without Chlorella viruses and those associated with a large amount of the viruses. The fate of Chlorella virus particles at the Paramecium surface was determined based on obtained statistical data and taking into account ciliate feeding currents and cortical reorganization during cell division. A life cycle of the viruses in the complete symbiotic system is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejop.2011.05.002DOI Listing

Publication Analysis

Top Keywords

paramecium bursaria
16
chlorella viruses
16
virus particles
16
bursaria chlorella
8
symbiotic system
8
symbiotic systems
8
paramecium surface
8
bursaria
7
chlorella
6
viruses
6

Similar Publications

Background: In the twentieth century, the textbook idea of packaging genomic material in the cell nucleus and metaphase chromosomes was the presence of a hierarchy of structural levels of chromatin organization: nucleosomes - nucleosomal fibrils -30 nm fibrils - chromomeres - chromonemata - mitotic chromosomes. Chromomeres were observed in partially decondensed chromosomes and interphase chromatin as ~100 nm globular structures. They were thought to consist of loops of chromatin fibres attached at their bases to a central protein core.

View Article and Find Full Text PDF

Protein A075L is a β-xylosyltransferase that participates in producing the core of the N-glycans found in VP54, the major viral capsid protein of Paramecium bursaria chlorella virus-1 (PBCV-1). In this study, we present an X-ray crystallographic analysis of the apo form of A075L, along with its complexes with the sugar donor and with a trisaccharide acceptor. The protein structure shows a typical GT-B folding, with two Rossmann-like fold domains, in which the acceptor substrate binds to the N-terminal region, and the nucleotide-sugar donor binds to the C-terminal region.

View Article and Find Full Text PDF

Dynamics of digestive vacuole differentiation clarified by the observation of living Paramecium bursaria.

Protoplasma

October 2024

Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue-Shi, Japan.

Paramecium bursaria is a ciliate species that has a symbiotic relationship with Chlorella spp. This study aimed to elucidate the dynamics of digestive vacuole (DV) differentiation in P. bursaria, using yeast stained with a pH indicator.

View Article and Find Full Text PDF

Quantitative analysis of trichocysts in Paramecium bursaria following artificial removal and infection with the symbiotic Chlorella variabilis.

Eur J Protistol

August 2024

Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue-shi, Japan. Electronic address:

The ciliate Paramecium bursaria possesses cell organelles called trichocysts that have defensive functions. Paramecium bursaria is capable of symbiosis with Chlorella variabilis, and the symbiotic algae are situated in close proximity to the trichocysts. To clarify the relationship between trichocysts in P.

View Article and Find Full Text PDF

Characterization of Crystals in Ciliate Paramecium bursaria Harboring Endosymbiotic Chlorella variabilis.

Curr Microbiol

July 2024

Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue-shi, Japan.

Protists, including ciliates retain crystals in their cytoplasm. However, their functions and properties remain unclear. To comparatively analyze the crystals of Paramecium bursaria, a ciliate, associated with and without the endosymbiotic Chlorella variabilis, we investigated the isolated crystals using a light microscope and analyzed their length and solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!