High-temperature modification of titania in the form of nanoplatelets is synthesized fast in one step at ambient conditions without any additional treatment like aging or calcination. Lecithin, which is the main component of lipid matrix of biological membranes, is first used as a structure-driven template. It is demonstrated that this natural surfactant can self-organize into lamellar L(α) mesophase when small amounts of water are admixed in its solution in nonpolar solvent. The water locating mainly in lecithin polar region as hydration shell at this concentration triggers the hydrolysis-condensation reactions after the precursor addition that results in instantaneous titania formation in the form of crystalline nanoparticles. Planar lamellar sheets serve as the template specifying its crystallinity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2011.04.038 | DOI Listing |
J Org Chem
January 2025
Department of Materials Science and Engineering, Institute of Science Tokyo, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.
A series of 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) derivatives with various heterocyclic moieties, including pyridine, carbazole, indole, and benzothiadiazole, was newly synthesized through a [2 + 2] cycloaddition-retroelectrocyclization reaction. Symmetric electron-rich 1,3-butadiynes with end-capped heterocyclic substituents were reacted with tetracyanoethylene (TCNE), yielding the target TCBD products in 60-80% yields under ambient or mild heating conditions. The thermal stability and optical and electrochemical properties of both 1,3-butadiyne precursors and the corresponding TCBD derivatives were investigated by using thermogravimetric analysis (TGA), UV-vis spectroscopy, and cyclic voltammetry (CV).
View Article and Find Full Text PDFHigh Alt Med Biol
January 2025
The Research Center for High Altitude Medicine, Qinghai University, Xining, China.
Ri-Li Ge. Medical problems of chronic hypoxia in highlanders living on the tibetan plateau. 00:00-00, 2024.
View Article and Find Full Text PDFChempluschem
January 2025
Sun Yat-Sen University, School of Chemistry, CHINA.
n-butane (n-C4H10) and isobutane (i-C4H10) are important raw materials in chemical industry. The separation of the two hydrocarbon isomers via distillation is challenging and energy-consuming. Herein we report the adsorption behavior of a microporous cobalt formate framework [Co3(HCOO)6] for potential kinetic separation of butane isomers.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States.
The nonthermal destruction of aqueous film-forming foam (AFFF) stockpiles, one of the major culprits responsible for water and soil contamination by per- and polyfluoroalkyl substances (PFAS), is extremely challenging because of the coexistence of mixed recalcitrant PFAS and complicated organic matrices at extremely high concentrations. To date, the complete defluorination of undiluted AFFF at ambient conditions has not been demonstrated. This study reports a novel piezoelectric ball milling approach for treating AFFF with a total organic fluorine concentration of 9080 mg/L and total organic carbon of 234 g/L.
View Article and Find Full Text PDFACS EST Air
January 2025
Environmental Engineering Program, University of Colorado Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.
Quantifying changes in the properties of smoke aerosols under varying conditions is important for understanding the health and environmental impacts of exposure to smoke. Smoke composition, aerosol liquid water content, effective density (ρ), and other properties can change significantly as smoke travels through areas under different ambient conditions and over time. During this study, we measured changes in smoke composition and physical properties due to oxidative aging and exposure to humidity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!