Enhancing immunogenicity to PLGA microparticulate systems by incorporation of alginate and RGD-modified alginate.

Eur J Pharm Sci

NanoBioCel Group, Laboratory of Pharmaceutics, University of the Basque Country, School of Pharmacy, Vitoria-Gasteiz, Spain.

Published: September 2011

Poly-lactide-co-glycolide acid (PLGA) and alginate represent two different families of polymers widely used for microencapsulation application, even more, for vaccination purposes as particulate delivery/adjuvant systems. Combination of these polymers has been previously considered for tissue engineering and drug delivery, however there is currently no report regarding their combination for vaccine application. In the present work, a w/o/w solvent extraction technique was developed to prepare novel 1μm microparticles (MP) composed of PLGA and a small percentage of alginate (PLGA-alg MP). In addition, RGD-modified alginate was also employed as biofunctionalized material favoring MP-cell interaction (PLGA-alg-RGD MP). Two malaria synthetic peptides, SPf66 and S3, were microencapsulated into PLGA, PLGA-alg and PLGA-alg-RGD MP. The diverse MP formulations resulted very similar in terms of size and morphology, although the addition of alginate improved encapsulation efficiency and reduced the amount of surface adsorbed peptide. Immunization studies in Balb/c mice by intradermal route demonstrated that incorporation of alginate elicited higher humoral and cellular immune responses leading to more balanced Th1/Th2 responses. Furthermore, administration of MP containing RGD-modified alginate showed evidence of cell targeting by enhancing immunogenicity of microparticles, in particular with regard to cellular responses such as IFN-γ secretion and lymphoproliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2011.05.015DOI Listing

Publication Analysis

Top Keywords

rgd-modified alginate
12
enhancing immunogenicity
8
alginate
8
incorporation alginate
8
plga
4
immunogenicity plga
4
plga microparticulate
4
microparticulate systems
4
systems incorporation
4
alginate rgd-modified
4

Similar Publications

Droplet-based microfluidic systems have received much attention as promising tools for fabricating monodisperse microspheres of alginate solutions with high accuracy and reproducibility. The immediate and simple ionotropic gelation of alginate, its biocompatibility, and its tunability of mechanical properties make it a favorable hydrogel in the biomedical and tissue engineering fields. In these fields, micron-sized alginate hydrogel spheres have shown high potential as cell vehicles and drug delivery systems.

View Article and Find Full Text PDF

Advanced tools for the in situ treatment of articular cartilage lesions are attracting a growing interest in both surgery and bioengineering communities. The interest is particularly high concerning the delivery of cell-laden hydrogels. The tools currently available in the state-of-the-art hardly find an effective compromise between treatment accuracy and invasiveness.

View Article and Find Full Text PDF

Context: The exact mechanisms regulating the initiation of porcine conceptus elongation are not known due to the complexity of the uterine environment.

Aims: To identify contributing factors for initiation of conceptus elongation in vitro , this study evaluated differential metabolite abundance within media following culture of blastocysts within unmodified alginate (ALG) or Arg-Gly-Asp (RGD)-modified alginate hydrogel culture systems.

Methods: Blastocysts were harvested from pregnant gilts, encapsulated within ALG or RGD or as non-encapsulated control blastocysts (CONT), and cultured.

View Article and Find Full Text PDF

Extrusion-based three-dimensional (3D) bioprinting is an emerging technology that allows for rapid bio-fabrication of scaffolds with live cells. Alginate is a soft biomaterial that has been studied extensively as a bio-ink to support cell growth in 3D constructs. However, native alginate is a bio-inert material that requires modifications to allow for cell adhesion and cell growth.

View Article and Find Full Text PDF

3D-printable plant protein-enriched scaffolds for cultivated meat development.

Biomaterials

May 2022

Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel; Aleph-Farms Ltd., Rehovot, 7670609, Israel. Electronic address:

Cultivated meat harnesses tissue engineering (TE) concepts to create sustainable, edible muscle tissues, for addressing the rising meat product demands and their global consequences. As 3D-printing is a promising method for creating thick and complex structures, two plant-protein-enriched scaffolding compositions were primarily assessed in our work as 3D-printable platforms for bovine satellite cells (BSC) maturation. Mixtures of pea protein isolate (PPI) and soy protein isolate (SPI) with RGD-modified alginate (Alginate(RGD)) were evaluated as prefabricated mold-based and 3D-printed scaffolds for BSC cultivation, and ultimately, as potential bioinks for cellular printing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!