Patients with atopic dermatitis (AD) are highly susceptible to viral, bacterial, and fungal skin infections because their skin is dry and this compromises the barrier function of the skin. Therefore, the skin microbiota of patients with AD is believed to be different from that of healthy individuals. In the present study, the skin fungal microbiota of nine patients with mild, moderate, or severe AD and ten healthy subjects were compared using an rRNA clone library. Fungal D1/D2 large subunit analysis of 3647 clones identified 58 species and seven unknown phylotypes in face scale samples from patients with AD and healthy subjects. Malassezia species were predominant, accounting for 63%-86% of the clones identified from each subject. Overall, the non-Malassezia yeast microbiota of the patients was more diverse than that of the healthy individuals. In the AD samples 13.0 ± 3.0 species per case were detected, as compared to 8.0 ± 1.9 species per case in the samples taken from healthy individuals. Notably, Candida albicans, Cryptococcus diffluens, and Cryptococcus liquefaciens were detected in the samples from the patients with AD. Of the filamentous fungal microbiota, Cladosporium spp. and Toxicocladosporium irritans were the predominant species in these patients. Many pathogenic fungi, including Meyerozyma guilliermondii (anamorphic name, Candida guilliermondii), and Trichosporon asahii, and allergenic microorganisms such as Alternaria alternata and Aureobasidium pullulans were found on the skin of the healthy subjects. When the fungal microbiota of the samples from patients with mild/moderate to severe AD and healthy individuals were clustered together by principal coordinates analysis they were found to be clustered according to health status.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1348-0421.2011.00364.xDOI Listing

Publication Analysis

Top Keywords

fungal microbiota
16
microbiota patients
16
healthy subjects
16
healthy individuals
16
samples patients
12
patients
9
skin fungal
8
patients atopic
8
atopic dermatitis
8
healthy
8

Similar Publications

Plant root and soil-associated microbiomes are influenced by niches, including bulk and rhizosphere soil. In this work, we collected bulk and rhizosphere soil samples at four potato developmental stages (leaf growth, flowering, tuber elongation and harvest) to identify whether rhizosphere microbiota are structured in a growth stage-dependent manner. The bacterial and fungal microbiota showed significant temporal differences in the rhizosphere and bulk soil.

View Article and Find Full Text PDF

Anaerobic gut fungi (AGF) were the last phylum to be identified within the rumen microbiome and account for 7-9% of microbial biomass. They produce potent lignocellulases that degrade recalcitrant plant cell walls, and rhizoids that can penetrate the cuticle of plant cells, exposing internal components to other microbiota. Interspecies H transfer between AGF and rumen methanogenic archaea is an essential metabolic process in the rumen that occurs during the reduction of CO to CH by methanogens.

View Article and Find Full Text PDF

Unraveling the shifts in the belowground microbiota and metabolome of Pinus pinaster trees affected by forest decline.

Sci Total Environ

January 2025

Microbiology of Agroforestry Ecosystems, Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain. Electronic address:

Pinus pinaster Aiton (maritime pine) stands are suffering a generalized deterioration due to different decline episodes throughout all its distribution area. It is well known that external disturbances can alter the plant associated microbiota and metabolome, which ultimately can entail the disruption of the normal growth of the hosts. Notwithstanding, very little is known about the shifts in the microbiota and the metabolome in pine trees affected by decline.

View Article and Find Full Text PDF

Composition and functional diversity of soil and water microbial communities in the rice-crab symbiosis system.

PLoS One

January 2025

Department of Earth and Environmental Sciences, California State University, Fresno, CA, United States of America.

Rice-crab co-culture is an environmentally friendly agricultural and aquaculture technology with high economic and ecological value. In order to clarify the structure and function of soil and water microbial communities in the rice-crab symbiosis system, the standard rice-crab field with a ring groove was used as the research object. High-throughput sequencing was performed with rice field water samples to analyze the species and abundance differences of soil bacteria and fungi.

View Article and Find Full Text PDF

Introduction: Opportunistic infections (IO) are infections of microbiota (fungi, viruses, bacteria, or parasites) that generally do not cause disease but turn into pathogens when the body's defense system is compromised. This can be triggered by various factors, one of which is due to a weakened immune system due to Diabetes Mellitus (DM), which increases the occurrence of opportunistic infections, especially in the oral cavity. Fungal (oral candidiasis) and viral (recurrent intraoral herpes) infections can occur in the oral cavity of DM patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!