Miniaturization of electronic devices to the level of single molecules requires detailed understanding of the mechanisms of their operation. One of the questions here is the identification of the role of structural alterations in charge separation and stabilization in photoactive complexes. To address this question, we calculate optimized molecular and electronic structures, and optical and vibrational spectra of l,l'-dimethyl 4,4'-bipyridinium-bis tetraphenylborate PQ(BPh(4))(2) complex ab initio using density functional theory approach and compare them with the experimentally observed UV-Vis and Raman spectra of the molecules in solid-state films. The results indicate that the association of PQ and BPh(4) leads to the formation of an internally ionized structure that is accompanied by the structural reorganization of both PQ (the twisting of pyridinium rings) and BPh(4) (phenyl rings rotation) moieties. The quanta of light do not seem to be directly involved in the formation of this ionized structure, but provide energy for fast recombination of the separated charges between BPh(4)(-) and PQ(2+). The high efficiency of the dark charge separation and the stabilization of separated charges in the complex permit the using of PQ(BPh(4))(2) in various charge-transfer devices like molecular probes, photovoltaic devices or chemical memory units.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1751-1097.2011.00961.x | DOI Listing |
Anal Chim Acta
February 2025
School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China. Electronic address:
Background: Fractionation of microalgal cells has important applications in producing pharmaceuticals and treating diseases. Multiple types of microalgal cells generally coexist in the oceans or lakes and are easily contaminated by microplastics and bacteria. Therefore, it is of paramount significance to develop an effective fractionation approach for microalgal cells for biological applications.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, South Korea. Electronic address:
The increasing contamination of water bodies with pharmaceutical pollutants, particularly acetaminophen, necessitates innovative and efficient remediation strategies. This study introduces a novel AgVO@MoO (AV@MoO) nanorod heterostructure synthesized via a hydrothermal process designed to enrich the photocatalytic degradation of pollutants using visible light. The bandgap energy of the optimum AV@MoO-3 heterostructure is 2.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry, Soochow University, Suzhou 215123, PR China. Electronic address:
In the manipulation of π-conjugated organic polymer, strategic alterations to the polymerization cascade facilitate the integration of donor (D) and acceptor (A) entities within the polymer's backbone. Such control is instrumental in broadening the photoresponse spectrum, enhancing photoinduced charge separation, and augmenting the efficiency of charge transfer processes. The oxygen-containing amino group (-ONH) was innovatively grafted into the polymerization process of the triazine-heptazine ring skeleton, and the -ONH was used as a capping agent to change the chain bonding in the polymerization process, thus a new intramolecular D-A structure was successfully constructed.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, College of Environmental Science & Engineering, Beijing University of Technology, Beijing 100124 China. Electronic address:
Photocatalytic CO reduction technology plays a significant role in the energy and environmental sectors, highlighting the necessity for developing high-efficiency and stable catalysts. In this study, a novel photocatalyst, xNiCoO/CN (x = 1, 3, and 5 wt%), was synthesized by depositing zeolitic imidazolate framework-67 (ZIF-67)-derived nickel cobaltate (NiCoO) hollow nanocages onto porous graphitic carbon nitride (g-CN, CN) nanosheets for photocatalytic CO reduction. Under visible light irradiation, the resulting 3NiCoO/CN photocatalyst demonstrated exceptional CO yields of up to 2879.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming 650091 China; Southwest United Graduate School, Kunming 650091 China. Electronic address:
Heterojunction materials for photocatalytic overall water splitting (POWS) become popular in recent times. However, even in the superior S-scheme heterojunction, the two semiconductor materials still do not have an efficient activity to separate and migrate photogenerated carriers. To further improve the charge separation and enhance the activity of POWS, a novel S-scheme heterojunction photocatalyst, Cu/ZnInS-V/TiO-V, was synthesized using solvothermal and calcination methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!