In this work, quartz crystal microbalance (QCM) sensors for detection of trace hydrogen cyanide (HCN) gas were developed based on nanostructural (flower-like, boat-like, ellipsoid-like, plate-like) CuO. Responses of all the sensors to HCN were found to be in an opposite direction as compared with other common volatile substances, offering excellent selectivity for HCN detection. The sensitivity of these sensors is dependent on the morphology of CuO nanostructures, among which the plate-like CuO has the highest sensitivity (2.26 Hz/μg). Comparison of the specific surface areas of CuO nanostructures shows that CuO of higher surface area (9.3 m(2)/g) is more sensitive than that of lower surface area (1.5 m(2)/g), indicating that the specific surface area of these CuO nanostructures plays an important role in the sensitivity of related sensors. On the basis of experimental results, a sensing mechanism was proposed in which a surface redox reaction occurs between CuO and Cu(2)O on the CuO nanostructures reversibly upon contact with HCN and air, respectively. The CuO-functionalized QCM sensors are considered to be a promising candidate for trace HCN gas detection in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/es201121w | DOI Listing |
BMC Microbiol
January 2025
Clinical microbiology and immunology department, National liver institute, Menoufia University, Shibin el Kom, Egypt.
Background: Recent advances in nanomedicine have derived novel prospects for development of various bioactive nanoparticles and nanocomposites with significant antibacterial and antifungal properties. This study aims to investigate some characteristics of the novel Se-NPs/CuO nanocomposite such as morphological, physicochemical, and optical properties, as well as to assess the antibacterial activity of this fabricated composite in different concentrations against some MDR Gram-positive and Gram-negative clinical bacterial isolates.
Methods: The Se-NPs/CuO nanocomposite was fabricated using the chemical deposition method.
J Biomed Mater Res A
January 2025
Marquette University School of Dentistry, Milwaukee, Wisconsin, USA.
In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Physics, Tamkang University, Tamsui, 25137, Taiwan.
This investigation explores the potential of co-incorporating nickel (Ni) and cobalt (Co) into copper oxide (CuO) nanostructures for bifunctional electrochemical charge storage and oxygen evolution reactions (OER). A facile wet chemical synthesis method is employed to co-incorporate Ni and Co into CuO, yielding diverse nanostructured morphologies, including rods, spheres, and flake. The X-ray diffraction (XRD) and Raman analyses confirmed the formation of NiCo-CuO nanostructure, with minor phases of nickel oxide (NiO) and cobalt tetraoxide (CoO).
View Article and Find Full Text PDFMolecules
January 2025
School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
Dopamine (DA) is an important catecholamine neurotransmitter and its abnormal concentration is closely related to diseases such as hypertension, Parkinson's disease and schizophrenia. Due to the advantages of high sensitivity and fast response for electrochemiluminescence (ECL), developing ECL sensors for detecting DA was very critical in clinical diagnosis. ECL resonance energy transfer (ECL-RET) was an effective signaling mechanism.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
Utilizing metal/nanoparticle (NP)- tolerant plant growth-promoting rhizobacteria (PGPR) is a sustainable and eco-friendly approach for remediation of NP-induced phytotoxicity. Here, Pisum sativum (L.) plants co-cultivated with different CuO-NP concentrations exhibited reduced growth, leaf pigments, yield attributes, and increased oxidative stress levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!