For the first time, atomistically detailed molecular dynamics calculations revealed molecular ordering of the water-oxidized atactic polystyrene (aPS) interface. Both ordering of the water molecules and the phenyl rings occur. In addition, the natural roughness of the surface has been simulated and compared to experimental values. The composition of the simulated aPS films is based on spin-coated aPS films that have been oxidized and characterized experimentally. The aPS surfaces are oxidized with ultraviolet-ozone radiation and have been characterized by XPS, AFM, and water contact angle measurements. XPS measurements show that the oxygen content in the sample increases rapidly with exposure and reaches saturation near 24 at. % of oxygen. The molecular dynamics simulations show smoothening of an hydrophobic aPS surface upon transition from vacuum to water. The smoothening decreases with increasing hydrophilicity. The calculations reveal ordering of oxidized phenyl rings for aPS surfaces in water. The order increases with increasing hydrophilicity. Additionally, we investigated the water structure near the aPS-water interface as a function of the surface hydrophilicity. With increasing hydrophilicity, the density of water at the aPS-water interface increases. The water density profile is steeper in the presence of hydrophobic aPS. The water shows an ordered layer near both the hydrophobic and hydrophilic surfaces; the position of this layer shifts toward the interface with increasing hydrophilicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la200203s | DOI Listing |
ACS Cent Sci
December 2024
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil. Electronic address:
This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Orthopaedic Surgery, Orthopaedic Center, The First Hospital of Jilin University, Changchun 130021, China. Electronic address:
Large bone defects are a major clinical challenge in bone reconstructive surgery. 3D printing is a powerful technology that enables the manufacture of custom tissue-engineered scaffolds for bone regeneration. Electrical stimulation (ES) is a treatment method for external bone defects that compensates for damaged internal electrical signals and stimulates cell proliferation and differentiation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland.
Physical and photophysical properties of starch-based biopolymer films containing 5-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine (NTA) powder as a nanofiller were examined using atomic force microscopy (AFM), Fourier-transform infrared spectroscopy (FTIR), stationary UV-Vis and fluorescence spectroscopy as well as resonance light scattering (RLS) and time-resolved measurements, and where possible, analyzed with reference to pristine NTA solutions. AFM studies revealed that the addition of NTA into the starch biopolymer did not significantly affect surface roughness, with all examined films displaying similar Sq values ranging from 70.7 nm to 79.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.
The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!