VO2 prediction and cardiorespiratory responses during underwater treadmill exercise.

Res Q Exerc Sport

Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA.

Published: June 2011

We compared cardiorespiratory responses to exercise on an underwater treadmill (UTM) and land treadmill (LTM) and derived an equation to estimate oxygen consumption (VO2) during UTM exercise. Fifty-five men and women completed one LTM and five UTM exercise sessions on separate days. The UTM sessions consisted of chest-deep immersion, with 0, 25, 50, 75, and 100% water-jet resistance. All session treadmill velocities increased every 3 min from 53.6 to 187.8 m x min(-1). Cardiorespiratory responses were similar between LTM and UTM when jet resistance for UTM was 50%. Using multiple regression analysis, weight-relative VO2 could be estimated as: VO2 (mLO2 c kg(-1) x min(-1)) = 0.19248 x height (cm) + 0.17422 x jet resistance (% max) + 0.14092 x velocity (m x min(-1)) -0.12794 x weight (kg)-27.82849, R2 = .82. Our data indicate that similar LTM and UTM cardiorespiratory responses are achievable, and we provide a reasonable estimate of UTM VO2.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02701367.2011.10599754DOI Listing

Publication Analysis

Top Keywords

cardiorespiratory responses
16
ltm utm
12
underwater treadmill
8
utm
8
utm exercise
8
jet resistance
8
vo2
5
vo2 prediction
4
cardiorespiratory
4
prediction cardiorespiratory
4

Similar Publications

Purpose: Cigarette smoking (CS) induces systemic changes that impair cardiorespiratory and muscular function both at rest and during exercise. Although these abnormalities are reported in sedentary, middle-aged smokers (SM) with pulmonary disease, few and controversial studies focused on young, physically active SM at the early stage of smoking history. This study aimed at assessing the impact CS on cardiorespiratory and metabolic response during an incremental test and the subsequent recovery in young, physically active SM without known lung or cardiovascular disease.

View Article and Find Full Text PDF

Background: Anakinra is an interleukin-1 receptor antagonist (IL-1Ra). Since IL-1 has been shown to play a key role in the etiology of different autoinflammatory diseases, blocking its pathway has become an important therapeutic target, even in neonates.

Aims: We aimed to report our experience in using anakinra to treat specific neonatal inflammatory conditions.

View Article and Find Full Text PDF

Objective: This study was undertaken to test the following hypotheses in the Atp1a3 mouse (which carries the most common human ATP1A3 (the major subunit of the neuronal Na/K-adenosine triphosphatase [ATPase]) mutation, D801N): sudden unexpected death in epilepsy (SUDEP) occurs during seizures and is due to terminal apneas in some and due to lethal cardiac arrhythmias in others; and Atp1a3 mice have central cardiorespiratory dysregulation and abnormal respiratory drive.

Methods: Comparison was made of littermate wild-type and Atp1a3 groups using (1) simultaneous in vivo video-telemetry recordings of electroencephalogram, electrocardiogram, and breathing; (2) whole-body plethysmography; and (3) hypoglossal nerve recordings.

Results: In Atp1a3 mice, (1) SUDEP consistently occurred during seizures that were more severe than preterminal seizures; (2) seizure clustering occurred in periods preceding SUDEP; (3) slowing of breathing rate (BR) and heart rate was observed preictally before preterminal and terminal seizures; and (4) the sequence during terminal seizures was as follows: bradypnea with bradycardia/cardiac arrhythmias, then terminal apnea, followed by terminal cardiac arrhythmias.

View Article and Find Full Text PDF

Hypertensive response to exercise (HRE) is an established risk factor for cardiovascular events. HRE is prevalent among people with excess adiposity. Both obesity and HRE have been individually associated with adverse cardiac remodeling.

View Article and Find Full Text PDF

Background And Objectives: Laboratory-based stress inductions are commonly used to elicit acute stress but vary widely in their procedures and effectiveness. We compared the effects of stress induction techniques on measures of two major biological stress systems: the early sympathetic-adrenal-medullary (SAM) and the delayed hypothalamic-pituitary-adrenal (HPA) axis response.

Design: A review and meta-analysis to examine the relationship between stress induction techniques on cardiorespiratory and salivary measures of SAM and HPA system activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!