A series of positional isomeric pairs of Fmoc-protected dipeptides, Fmoc-Gly-Xxx-OY/Fmoc-Xxx-Gly-OY (Xxx=Ala, Val, Leu, Phe) and Fmoc-Ala-Xxx-OY/Fmoc-Xxx-Ala-OY (Xxx=Leu, Phe) (Fmoc=[(9-fluorenylmethyl)oxy]carbonyl) and Y=CH(3)/H), have been characterized and differentiated by both positive and negative ion electrospray ionization ion-trap tandem mass spectrometry (ESI-IT-MS(n)). In contrast to the behavior of reported unprotected dipeptide isomers which mainly produce y(1)(+) and/or a(1)(+) ions, the protonated Fmoc-Xxx-Gly-OY, Fmoc-Ala-Xxx-OY and Fmoc-Xxx-Ala-OY yield significant b(1)(+) ions. These ions are formed, presumably with stable protonated aziridinone structures. However, the peptides with Gly- at the N-terminus do not form b(1)(+) ions. The [M+H](+) ions of all the peptides undergo a McLafferty-type rearrangement followed by loss of CO(2) to form [M+H-Fmoc+H](+). The MS(3) collision-induced dissociation (CID) of these ions helps distinguish the pairs of isomeric dipeptides studied in this work. Further, negative ion MS(3) CID has also been found to be useful for differentiating these isomeric peptide acids. The MS(3) of [M-H-Fmoc+H](-) of isomeric peptide acids produce c(1)(-), z(1)(-) and y(1)(-) ions. Thus the present study of Fmoc-protected peptides provides additional information on mass spectral characterization of the dipeptides and distinguishes the positional isomers.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.5076DOI Listing

Publication Analysis

Top Keywords

dipeptide isomers
8
electrospray ionization
8
tandem mass
8
mass spectrometry
8
negative ion
8
b1+ ions
8
isomeric peptide
8
peptide acids
8
ions
7
characterization nα-fmoc-protected
4

Similar Publications

Metalated intact and deprotonated histidyl glycine and glycyl histidine dipeptides were investigated in the gas phase by using infrared multiple photon dissociation (IRMPD) spectroscopy with light from a free-electron laser (FEL). The dipeptides M(GlyHis), M(HisGly), [M(GlyHis-H)], and [M(HisGly-H)], where M = Zn and Cd, were probed to elucidate how the His position along the peptide chain and ligand charge state might influence the structures observed in the gas phase. Simulated annealing calculations were performed to determine energetically low-lying conformers and isomers of these structures.

View Article and Find Full Text PDF

Retention mechanisms of dipeptides on superficially porous particle vancomycin- and teicoplanin-based chiral stationary phases.

J Chromatogr A

August 2024

The A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Academician Arbuzov St., Kazan 420088, Russia.

Chromatographic behavior of new chiral stationary phases (CSPs) Chiral-T and Chiral-V with teicoplanin and vancomycin antibiotics grafted onto superficially porous silica particles was studied in relation to dipeptide (DP) stereoisomers. The unbuffered water-methanol solutions were used as mobile phases (MPs). The effects of physical properties and molecular structure of analytes and selectors on retention and separation of DP stereoisomers are discussed herein.

View Article and Find Full Text PDF

The stereoselective synthesis of -diaminopimelic acid (-DAP), the key cross-linking amino acid of the peptidoglycan cell wall layer in Gram-negative bacteria, and its biological precursor, l,l-DAP, is described. The key step involved stereoselective reduction of a common enone-derived amino acid by substrate- or reagent-based control. Overman rearrangement of the resulting allylic alcohols, concurrent alkene hydrogenation and trichloroacetamide reduction, and subsequent ruthenium-catalyzed arene oxidation completed the synthesis of each stereoisomer.

View Article and Find Full Text PDF

The abiotic synthesis of peptides, widely regarded as one of the key chemical reactions on the prebiotic Earth, is thermodynamically constrained in solution. Herein, a simulation of the lightning phenomenon on the sea surface using bubble bursting and arc plasma under ambient conditions enables dipeptide formation of six amino acids with conversion ratios ranging from 2.6 % to 25.

View Article and Find Full Text PDF

This work presents a benchtop method for collecting the room temperature gas phase infrared (IR) action spectra of protonated amino acids and their isomers. The adopted setup uses a minimally modified commercial electrospray ionization linear ion trap mass spectrometer (ESI-LIT-MS) coupled to a broadband continuous wave (cw) quantum cascade laser (QCL) source. This approach leverages messenger assisted action spectroscopic techniques using water-tagged molecular ions with complex formation, irradiation, and subsequent analysis, all taking place within a single linear ion trap stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!