Background: Recent studies have identified stem/progenitor cells in human and mouse uterine epithelium, which are postulated to be responsible for tissue regeneration and proliferative disorders of human endometrium. These progenitor cells are thought to be derived from Müllerian duct (MD), the primordial female reproductive tract (FRT).
Methodology/principal Findings: We have developed a model of human reproductive tract development in which inductive neonatal mouse uterine mesenchyme (nMUM) is recombined with green fluorescent protein (GFP)-tagged human embryonic stem cells (hESCs); GFP-hESC (ENVY). We demonstrate for the first time that hESCs can be differentiated into cells with a human FRT epithelial cell phenotype. hESC derived FRT epithelial cells emerged from cultures containing MIXL1(+) mesendodermal precursors, paralleling events occurring during normal organogenesis. Following transplantation, nMUM treated embryoid bodies (EBs) generated epithelial structures with a typical MD phenotype that expressed the MD markers PAX2, HOXA10. Functionally, the hESCs derived FRT epithelium responded to exogenous estrogen by proliferating and secreting uterine-specific glycodelin A (GdA).
Conclusions/significance: These data show nMUM can induce differentiation of hESC to form the FRT epithelium. This may provide a model to study early developmental events of the human FRT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3115988 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021136 | PLOS |
Andrology
January 2025
Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, Université Grenoble Alpes, Team "Physiopathology and Pathophysiology of Sperm Cells", Grenoble, France.
Background: In mammals, sperm fertilization potential relies on efficient progression within the female genital tract to reach and fertilize the oocyte. This fundamental property is supported by the flagellum, an evolutionarily conserved organelle, which contains dynein motor proteins that provide the mechanical force for sperm propulsion and motility. Primary motility of the sperm cells is acquired during their transit through the epididymis and hyperactivated motility is acquired throughout the journey in the female genital tract by a process called capacitation.
View Article and Find Full Text PDFJ Endocrinol Invest
January 2025
Regional Reference Center for Gender Incongruence (CRRIG) of the Veneto Region, University Hospital of Padova, Padua, Italy.
Purpose: Previous studies show that transgender and gender-diverse (TGD) individuals, especially those assigned male at birth (AMAB), often have low bone mineral density (BMD) before beginning gender-affirming hormone therapy (GAHT). The reasons for this are not fully understood, and the potential role of androgen receptor (AR) polymorphisms - known to affect bone density in the general population - has not been explored. This study aims to assess the impact of AR polymorphisms on bone health in the TGD population.
View Article and Find Full Text PDFNature
January 2025
Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
Reproduction, development and homeostasis depend on motile cilia, whose rhythmic beating is powered by a microtubule-based molecular machine called the axoneme. Although an atomic model of the axoneme is available for the alga Chlamydomonas reinhardtii, structures of mammalian axonemes are incomplete. Furthermore, we do not fully understand how molecular structures of axonemes vary across motile-ciliated cell types in the body.
View Article and Find Full Text PDFZhonghua Gan Zang Bing Za Zhi
January 2025
Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei230022, China NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei230032, China Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei230032, China Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei230032, China Anhui Province Key Laboratory of Reproductive Disorders and Obstetrics and Gynecology Diseases, Hefei230032, China Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei230032, China Anhui Provincial Institute of Translational Medicine, Hefei230032, China.
Hepatolenticular degeneration, also known as Wilson's disease, is a type of autosomal recessive genetic disorder of copper metabolism. The causative gene, ATP7B, is located on the long arm of chromosome 13 and encodes a P-type ATPase that is involved in copper transport. Pathogenic mutations in the ATP7B gene sequence lead to the diminished or lost function of the ATP7B protein, resulting in pathological copper deposition in organs such as the liver, brain, kidneys, and cornea.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
Alarmins are a class of molecules released when affected cells damaged or undergo apoptosis. They contain various chemotactic and immunomodulatory proteins or peptides. These molecules regulate the immune response by interacting with pattern recognition receptors (PRRs) and play important roles in inflammatory response, tissue repair, infection defense, and cancer treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!