Accurately assigning folds for divergent protein sequences is a major obstacle to structural studies. Herein, we outline an effective method for fold recognition using sets of PSSMs, each of which is constructed for different protein folds. Our analyses demonstrate that FSL (Fold-specific Position Specific Scoring Matrix Libraries) can predict/relate structures given only their amino acid sequences of highly divergent proteins. This ability to detect distant relationships is dependent on low-identity sequence alignments obtained from FSL. Results from our experiments demonstrate that FSL perform well in recognizing folds from the "twilight-zone" SABmark dataset. Further, this method is capable of accurate fold prediction in newly determined structures. We suggest that by building complete PSSM libraries for all unique folds within the Protein Database (PDB), FSL can be used to rapidly and reliably annotate a large subset of protein folds at proteomic level. The related programs and fold-specific PSSMs for our FSL are publicly available at: http://ccp.psu.edu/download/FSLv1.0/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116844 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020557 | PLOS |
AlphaFold2 (AF2), a deep-learning based model that predicts protein structures from their amino acid sequences, has recently been used to predict multiple protein conformations. In some cases, AF2 has successfully predicted both dominant and alternative conformations of fold-switching proteins, which remodel their secondary and tertiary structures in response to cellular stimuli. Whether AF2 has learned enough protein folding principles to reliably predict alternative conformations outside of its training set is unclear.
View Article and Find Full Text PDFBio Protoc
January 2025
Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University. Baoding, China.
Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy.
View Article and Find Full Text PDFIn recent years, advances in artificial intelligence (AI) have transformed structural biology, particularly protein structure prediction. Though AI-based methods, such as AlphaFold (AF), often predict single conformations of proteins with high accuracy and confidence, predictions of alternative folds are often inaccurate, low-confidence, or simply not predicted at all. Here, we review three blind spots that alternative conformations reveal about AF-based protein structure prediction.
View Article and Find Full Text PDFQ Rev Biophys
January 2025
Elettra Sincrotrone Trieste, Italy.
Yeast frataxin (Yfh1) is a small natural protein from yeast that has the unusual property of undergoing cold denaturation at temperatures above the freezing point of water when under conditions of low ionic strength. This peculiarity, together with remarkable resilience, allows the determination, for the whole protein as well as for individual residues, of the stability curve, that is the temperature dependence of the free energy difference between the unfolded and folded forms. The ease of measuring stability curves without the need to add denaturants or introduce destabilizing mutations makes this protein an ideal 'tool' for investigating the influence of many environmental factors on protein stability.
View Article and Find Full Text PDFBMC Genomics
January 2025
Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!