Prediction of protein subcellular localization is a challenging problem, particularly when the system concerned contains both singleplex and multiplex proteins. In this paper, by introducing the "multi-label scale" and hybridizing the information of gene ontology with the sequential evolution information, a novel predictor called iLoc-Gneg is developed for predicting the subcellular localization of gram-positive bacterial proteins with both single-location and multiple-location sites. For facilitating comparison, the same stringent benchmark dataset used to estimate the accuracy of Gneg-mPLoc was adopted to demonstrate the power of iLoc-Gneg. The dataset contains 1,392 gram-negative bacterial proteins classified into the following eight locations: (1) cytoplasm, (2) extracellular, (3) fimbrium, (4) flagellum, (5) inner membrane, (6) nucleoid, (7) outer membrane, and (8) periplasm. Of the 1,392 proteins, 1,328 are each with only one subcellular location and the other 64 are each with two subcellular locations, but none of the proteins included has pairwise sequence identity to any other in a same subset (subcellular location). It was observed that the overall success rate by jackknife test on such a stringent benchmark dataset by iLoc-Gneg was over 91%, which is about 6% higher than that by Gneg-mPLoc. As a user-friendly web-server, iLoc-Gneg is freely accessible to the public at http://icpr.jci.edu.cn/bioinfo/iLoc-Gneg. Meanwhile, a step-by-step guide is provided on how to use the web-server to get the desired results. Furthermore, for the user's convenience, the iLoc-Gneg web-server also has the function to accept the batch job submission, which is not available in the existing version of Gneg-mPLoc web-server. It is anticipated that iLoc-Gneg may become a useful high throughput tool for Molecular Cell Biology, Proteomics, System Biology, and Drug Development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3117797 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0020592 | PLOS |
Plant Physiol Biochem
December 2024
College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:
With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.
View Article and Find Full Text PDFElife
January 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Co-active or temporally ordered neural ensembles are a signature of salient sensory, motor, and cognitive events. Local convergence of such patterned activity as synaptic clusters on dendrites could help single neurons harness the potential of dendritic nonlinearities to decode neural activity patterns. We combined theory and simulations to assess the likelihood of whether projections from neural ensembles could converge onto synaptic clusters even in networks with random connectivity.
View Article and Find Full Text PDFCells
January 2025
Department of Cancer Biology and Molecular Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA.
Structural maintenance of chromosome-1A (SMC1A) is overexpressed in various malignancies including triple-negative breast cancer (TNBC). As a core component of the cohesin complex, SMC1A was initially recognized for its involvement in chromosomal cohesion and DNA-repair pathways. However, recent studies have unveiled its pivotal role in epithelial-mesenchymal transition (EMT), metastasis, and chemo- and radio-resistance in cancer cells.
View Article and Find Full Text PDFCells
January 2025
Key Laboratory of Resource Biology and Biotechnology Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an 710069, China.
Glycosylation plays a critical role in various biological processes, yet identifying specific glycosyltransferase substrates remains a challenge due to the complexity of glycosylation. Here, we employ proximity labeling with biotin ligases BASU and TurboID to map the proximitome of MGAT3, a glycosyltransferase responsible for the biosynthesis of the bisecting GlcNAc structure, in HEK293T cells. This approach enriched 116 and 189 proteins, respectively, identifying 17 common substrates shared with bisecting GlcNAc-bearing proteome obtained via intact glycopeptide enrichment methods.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea.
Extracellular vesicles (EVs) have garnered attention in research for their potential as biochemical transporters and immune modulators, crucial for regulating the host immune system. The present study was conducted to isolate and characterize EVs from Gram negative bacteria (EVs) and investigate their proteomic profile and immune responses. Isolation of EVs was carried out using ultracentrifugation method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!