The objective of this study was to analyze the effects of lactate on coronary circulation. Rat hearts were perfused in a Langendorff preparation, and the coronary response to lactate (3-30 mM) was recorded after precontracting coronary vasculature with 11-dideoxy-1a,9a-epoxymethanoprostaglandin F2α (U46619), in the presence or the absence of the inhibitor of nitric oxide synthesis, N-omega-nitro-l-arginine methyl ester (l-NAME, 10 M), the blocker of Ca-dependent potassium channels, tetraethylammonium (TEA, 10 M), or the blocker of adenosine triphosphate-sensitive potassium channels, glybenclamide (10 M). The effects of lactate were also studied in isolated segments of rat coronary arteries that were precontracted with U46619, with or without endothelium. In perfused hearts, lactate induced concentration-dependent coronary vasodilatation and a reduction in myocardial contractility (left ventricular developed pressure and dP/dt) without altering the heart rate. Coronary vasodilatation in response to lactate was reduced by l-NAME but unaffected by TEA or glybenclamide. The effects of lactate on myocardial contractility were unchanged by l-NAME, TEA, or glybenclamide. In isolated coronary artery segments, lactate also produced relaxation, an effect attenuated by removing the endothelium. Together these findings suggest that lactate exerts coronary vasodilatory effects through the release of endothelial nitric oxide, independently of potassium channels. These findings may be relevant for the regulation of coronary circulation when lactate levels are elevated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/FJC.0b013e318226bcf7 | DOI Listing |
J Cardiovasc Med (Hagerstown)
February 2025
Center of Excellence in Cardiovascular Sciences, Ospedale Isola Tiberina, Gemelli Isola.
Aims: Coronary microvascular dysfunction (CMD) is a heterogeneous condition defined by reduced coronary flow reserve (CFR). The new index 'microvascular resistance reserve' (MRR) has been developed, but its role is unclear. We investigate the relationships between functional indices in ANOCA (angina and non-obstructive coronary arteries) patients and evaluate the hemodynamic features of different CMD subtypes.
View Article and Find Full Text PDFEur Heart J Case Rep
January 2025
Cardiology Department, Loyola University Medical Center, 2160 S 1st Ave, Maywood, IL 60153-3328, USA.
Background: Immune checkpoint inhibitors (ICIs) are effective antineoplastic agents but can cause adverse effects in many organ systems. Cardiovascular toxicities include arrhythmias, myocarditis, heart failure, takotsubo syndrome, pericarditis, coronary artery disease, and vasculitis.
Case Summary: A 66-year-old woman with Stage 3C2 endometrial carcinoma presented for her second cycle of pembrolizumab, carboplatin, and paclitaxel.
Circ Cardiovasc Interv
January 2025
Texas A&M School of Medicine, Bryan (A.E.).
Circ Heart Fail
January 2025
The CardioVascular Center, Tufts Medical Center, Boston, MA (S.L.H., K.D.E., G.G., N.K.K.).
The integrative physiology of the left ventricle and systemic circulation is fundamental to our understanding of advanced heart failure and cardiogenic shock. In simplest terms, any increase in aortic stiffness increases the vascular afterload presented to the failing left ventricle. The net effect is increased myocardial oxygen demand and reduced coronary perfusion pressure, thereby further deteriorating contractile function.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Research & Development, AFNP Med, Wien, Austria.
The functions of the heart and brain are closely linked and essential to support human life by the heart-brain axis, which is a complex interconnection between the heart and brain. Also, cardiac function and cerebral blood flow regulate the brain's metabolism and function. Therefore, deterioration of cardiac function may affect cognitive function and may increase the risk of dementia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!