Organic solvent use in research institutions in Japan.

Ind Health

Kyoto Industrial Health Association (Main Office), 67 Nishinokyo-Kitatsuboicho, Nakagyo-ku, Kyoto, Japan.

Published: December 2011

In 2008-2009, types of organic solvents used and air-borne vapor concentrations were surveyed in 1909 laboratories in four large research institutions in accordance with current regulations. The results were classified into 5 groups in terms of research fields (agriculture, biology, medicine, natural science, and technology and engineering) and evaluated after the regulatory rules. Laboratory air analyses by gas chromatography identified 5 and 20 solvents out of 7 Group 1 solvents and 40 Group 2 solvents, respectively; 10 solvents were used in more than 10% of the laboratories in each of the 5 research fields. The use of unmixed single solvent appeared to be unique in research laboratories in contrast to use of solvent mixtures in industrial facilities for production. Laboratories of technology and engineering fields used more various organic solvents more frequently, whereas use of xylenes appeared to be more specific to laboratories of bio-medical fields. Among the commonly used solvents, chloroform was the leading solvent to induce poorer results in regulatory classification (i.e., Class 3 in Administrative Control Classes) typically when applied in high pressure liquid chromatography which was too voluminous to be accommodated in a local exhaustion chamber.

Download full-text PDF

Source
http://dx.doi.org/10.2486/indhealth.ms1232DOI Listing

Publication Analysis

Top Keywords

organic solvents
8
technology engineering
8
solvents group
8
group solvents
8
solvents
7
laboratories
5
organic solvent
4
solvent institutions
4
institutions japan
4
japan 2008-2009
4

Similar Publications

Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.

View Article and Find Full Text PDF

Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) are a class of porous materials that are of topical interest for their utility in water-related applications. Nevertheless, molecular-level insight into water-MOF interactions and MOF hydrolytic reactivity remains understudied. Herein, we report two hydrolytic pathways leading to either structural stability or framework decomposition of a MOF (ZnMOF-1).

View Article and Find Full Text PDF

Raman scattering of water in vicinity of polar complexes: Computational insight into baseline subtraction.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic. Electronic address:

Water is a greatly convenient solvent in Raman spectroscopy. However, non-additive effects sometimes make its signal difficult to subtract. To understand these effects, spectra for clusters of model ions, including transition metal complexes and water molecules, were simulated and analyzed.

View Article and Find Full Text PDF

Influence of deep-eutectic and organic solvents on the recovery, molecular mass, and functional properties of dextran: Application using dextran film.

Int J Biol Macromol

December 2024

Bioprocess Engineering Laboratory, School of Chemical and Biotechnology, Centre for Bioenergy, SASTRA Deemed to be University, India. Electronic address:

The novelty of this study is to examine the impact of different solvent systems, namely organic and deep eutectic solvents, on recovery yield, antioxidant activity, poly-dispersity index, and functional properties of microbial dextran. The optimized conditions for maximum dextran recovery were obtained using organic solvent found to be: supernatant: organic solvent - 1:4 v/v; organic solvents: ethanol, isopropanol, and acetone; temperature: 0 °C; and time: 16 h. Though a similar structure was obtained for dextran recovered using various solvents, the degree of branching varied, with DES-precipitated dextran having the highest branching of 20 % α-(1,3) linkages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!