The cation-exchange capture step of a monoclonal antibody (mAb) purification process using single column batch and multicolumn continuous chromatography (MCSGP) was modeled with a lumped kinetic model. Model parameters were experimentally determined under analytical and preparative conditions: porosities, retention factors and mass transfer parameters of purified mAb were obtained through a systematic procedure based on retention time measurements. The saturation capacity was determined through peak fitting assuming a Langmuir-type adsorption isotherm. The model was validated using linear batch gradient elutions. In addition, the model was used to simulate the start-up, cyclic steady state and shut down behavior of the continuous capture process (MCSGP) and to predict performance parameters. The obtained results were validated by comparison with suitable experiments using an industrial cell culture supernatant. Although the model was not capable of delivering quantitative information of the product purity, it proved high accuracy in the prediction of product concentrations and yield with an error of less than 6%, making it a very useful tool in process development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2011.05.103DOI Listing

Publication Analysis

Top Keywords

capture step
8
continuous chromatography
8
model
6
model simulation
4
simulation experimental
4
experimental verification
4
verification cation-exchange
4
cation-exchange igg
4
igg capture
4
step batch
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!