Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Mating systems are shaped by a species' ecology, which sets the stage for sexual selection. Males of the gregarious parasitoid wasp Nasonia vitripennis compete to mate virgin females at the natal site, before females disperse. Males could increase their fitness by being larger and monopolizing female emergence sites or by emerging earlier pre-empting access to females. We consider sexual selection on male body size and development time in Nasonia, and a potential trade-off between the two traits. We explored sex-specific patterns of larval and pupal development, finding that smaller wasps developed slower than their host-mates. Using competition experiments between brothers, we found that earlier eclosing males mated more females independently of absolute and relative body size. Our data explain the lack of relationship between fitness and body size in male Nasonia and reinforce the importance of protandry in mating systems where access to mates is time-limited.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1420-9101.2011.02343.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!